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DMT of Parallel-Path and Layered Networks Under
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Abstract—In this paper, we study the diversity-multi-
plexing-gain tradeoff (DMT) of wireless relay networks under
the half-duplex constraint. It is often unclear what penalty if any,
is imposed by the half-duplex constraint on the DMT of such
networks. We study two classes of networks; the first class, called
KPP(I) networks, is the class of networks with the relays organized
in parallel paths between the source and the destination. While
we assume that there is no direct source-destination path, the
relaying paths can interfere with each other. The second class,
termed as layered networks, is comprised of relays organized in
layers, where links exist only between adjacent layers.
We present a communication scheme based on static schedules

and amplify-and-forward relaying for these networks. We also
show that for KPP(I) networks with , the proposed schemes
can achieve full-duplex DMT performance, thus demonstrating
that there is no performance hit on the DMT due to the half-duplex
constraint. We also show that, for layered networks, a linear DMT
of between the maximum diversity and the
maximum MG, is achievable. We adapt existing DMT
optimal coding schemes to these networks, thus specifying the
end-to-end communication strategy explicitly.

Index Terms—Amplify-and-forward protocols, cooperative di-
versity, diversity-multiplexing gain tradeoff, explicit codes, KPP
networks, layered networks, multi-antenna networks, multi-hop
networks, relay networks.

I. INTRODUCTION

W IRELESS relay networks are a class of multi-terminal
networks comprised of a source with messages to be

communicated to a sink and other nodes, termed relays, whose
purpose is to aid in the source-sink communication.While much
is known about general full-duplex relay networks, the addi-
tional complexity arising from the half-duplex constraint, has
not been fully understood.
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In a half-duplex network, a node cannot both transmit and re-
ceive simultaneously. When there is more than one relay node,
the transmission and reception of the various nodes have to be
carefully orchestrated in order tomeet the half-duplex constraint
for all the nodes, a process termed as scheduling. In the net-
working literature, while protocols for centralized and decen-
tralized scheduling are extensively studied, physical layer ef-
fects are not fully considered. In the case of relay networks, an
information theoretic understanding of even centralized sched-
uling seems lacking.
In this paper, we initiate a fundamental study of the DMT

of multi-hop half-duplex networks. We study the DMT of two
classes of half-duplex networks: the first class, called KPP(I)
networks, is the class of networks with the relays organized in
parallel paths between the source and the destination. While

we assume that there is no direct source-destination path, the
relaying paths can interfere with each other. The second

class, called layered networks, is comprised of relays organized
in layers, where links exist only between adjacent layers. We
show that, for layered networks, a linear DMT (of the form

) between the maximum diversity of and
maximum MG of 1 can be achieved. We also show that for
KPP(I) networks, the proposed schemes can achieve full-du-
plex DMT performance, thus demonstrating that there is no
performance hit arising from the half-duplex constraint. While
the paper is mainly concerned with nodes with single antennas,
we also consider extensions to multiple antenna nodes. We also
show that existing code constructions for the point-to-point
channel can be adapted to the relay network. The key technical
idea in the paper is to construct schemes for a simple network
model called KPP network, which are then used as a building
block to construct schemes for other complicated network
models including KPP(D) networks, which do not have direct
link, KPP(I) networks and layered networks.

A. Prior Work

There are three main lines of work that are related to the cur-
rent paper; the first one involving the study of DMT of half-du-
plex two-hop relay networks, the second relating to the DMT of
full-duplex multi-hop relay networks and the third studying the
capacity of arbitrary full-duplex relay networks. We summarize
related prior work in these areas in the following.
1) Two-Hop Networks: The Diversity-Multiplexing gain

Tradeoff (DMT) as a means of evaluating point-to-point, mul-
tiple-antenna schemes in the context of slow-fading channels
was proposed by Zheng and Tse [5]. Beginning with the view-
point of relaying as a mechanism for cooperatively increasing
diversity [3], [4], several papers in the literature have studied
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two-hop half-duplex relay networks with the DMT as a per-
formance criterion [6]–[11], [16]. However, the DMT of even
simple half-duplex relay networks remain unknown, except for
the single-relay network solved in [24].
In the present paper, the DMT of two-hop, half-duplex relay

networks in the absence of a direct link between the source
and destination is fully characterized and shown to equal that
under full-duplex operation. In a parallel and independent work
[26], the same result is obtained using a completely different
method.
2) Multi-Hop Networks: In the case of multi-hop networks

(with potentially multiple antennas), much less is known. There
is some existing work that characterizes the DMT of full-duplex
multi-hop networks, even in the presence of multiple antennas.
This line of work was initiated in [15], where the DMT of the
product of rayleigh-fading matrices was computed. This is then
applied to show that a natural AF protocol where nodes simply
forward their received symbols will not even achieve full diver-
sity. To remedy this, a new AF protocol named flip-and-forward
protocol is proposed, which achieves full diversity. Building
on this, new AF protocols are constructed in [36], [37] and
the DMT of full-duplex multi-hop networks is fully character-
ized. The performance of practical coding schemes like relay
selection are analyzed in [28], [29]. While most of these papers
are focussed on full-duplex networks, the attention here, is on
half-duplex networks. A naive strategy of applying a full-duplex
protocol for a half-duplex layered network is to activate alter-
nate layers of relays in a given time. However, this strategy can
result in a rate loss factor of two, which is equivalent to a mul-
tiplexing-gain (MG) loss factor of two. In the current paper, we
study multi-hop networks under the half-duplex constraint and
show that the multiplexing-gain penalty can be avoided through
improved scheduling.
3) Capacity: In a pioneering paper [27], the com-

pound-channel capacity of wireless full-duplex relay networks
is characterized to within a constant number of bits. As a
corollary of this result, the DMT of arbitrary full-duplex relay
networks is shown to equal the cut-set bound. For half-duplex
relay networks, this scheme is shown to achieve the best-pos-
sible DMT for any given static schedule. However, it is unclear
what the best static schedules are, and whether they can attain
the performance of the best non-static scheduling schemes
(see, for an example of non-static scheme, the dynamic-de-
code-and-forward scheme proposed in [7]). In the current
paper, we show that for certain networks, static schedules are
indeed optimal and even simple amplify-and-forward protocols
are sufficient to achieve the DMT, as opposed to the infinite
block-length random-coding schemes in [27].

B. Network Model

1) Setting and Channel Model: We use uppercase letters to
denote matrices and lowercase letters to denote vectors/scalars.
Vectors and scalars are differentiated by the context. Bold-
face letters are used to denote a random entity, irrespective of
whether it is a random scalar, vector or a matrix. Let
be an undirected graph used to represent the wireless network,
where is the set of nodes and the edge set has an edge

if nodes and are neighbors. We adopt the following
channel model:

(1)

where denotes time, corresponds to the received signal
at node is the noise vector, is the channel matrix
and , the vector transmitted by the node , all at time .
This model captures both the broadcast and interference nature
of the wireless medium.
2) Assumptions: Our description is in terms of the equiv-

alent complex-baseband, discrete-time channel. We follow the
literature [7] in making the following standard assumptions con-
cerning the channel model:
1) All channels are assumed to be quasi-static and to expe-
rience Rayleigh fading and hence all fade coefficients are
i.i.d., circularly-symmetric, complex Gaussian
random variables.

2) The additive noise at each receiver is also modeled as pos-
sessing an i.i.d., circularly-symmetric, complex Gaussian

distribution.
3) Each receiver (but none of the transmitters) is assumed to
have perfect channel-state information of all the upstream
channels in the network.1

4) There is a long-term power constraint at each node, i.e.,
for large enough,

(2)

We will further assume that each node has a single antenna
throughout the paper, except in Section VI, where we will study
the scenario where each node potentially has multiple antennas.

C. Network Taxonomy

In this section, we will describe the two classes of networks
that we study in detail in this paper.
1) K-Parallel-Path Networks: We begin with a definition of

a class of networks called K-parallel path networks.
Definition 1: The K-parallel path (KPP) network is defined

as a single-source, single-sink (ss-ss) network that can be
expressed as the union of node-disjoint paths called relaying
paths, each comprised of at least one relay, connecting the
source to the sink. Relaying path is labeled and along
path , there are relay nodes labeled (see
Fig. 1(a)).
The definition 1 of KPP networks precludes the possibility of

either having a direct link between the source and the sink, or of
having links connecting nodes lying on different node-disjoint
paths. We now extend the definition of KPP networks to include
these possibilities.
Definition 2: If a given network is the union of a KPP net-

work and a direct link between the source and sink, then the
network is called a KPP-network-with-direct-link and is abbre-
viated as KPP(D) network. If a given network is the union of a

1However, for the protocols proposed in this paper, the CSIR is utilized only
at the sink. Please see Section I-D.2 for details.
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Fig. 1. Examples of KPP networks (a) KPP, . (b) KPP(I), . (c)
KPP(D), . (d) KPP(I, D), .

KPP network as well as links interconnecting relays in various
paths, then the network is called a KPP-network-with-interfer-
ence and abbreviated by KPP(I) network. If a given network is
the union of a KPP(I) network and a direct link, then the network
is called a KPP-network-with-interference-and-direct-path and
is abbreviated by KPP(I, D) network. Fig. 1 provides examples
of all four variants of KPP networks.
Note that in KPP(I) networks, there are no interfering links

emanating from the source or arriving at the destination; the
interfering links are present only between relays.
For a KPP(D), KPP(I) or KPP(I, D) network, we can find

a set of node-disjoint paths from the source to the sink, in
which every node appears once. We call the union of these
node-disjoint paths, called backbone paths ,
as the backbone KPP network. When there are many choices
for the K node-disjoint paths, we will arbitrarily fix one such
choice. A start node and end node of a backbone path are the
first and the last relays respectively along the path. Let have
edges. The -th edge on the -th path will be denoted by
and the associated fading coefficient by .
2) Layered Networks: We next define layered networks. Lay-

ered networks have been considered previously in [15], [25] and
[28], albeit under different names and slightly varying defini-
tions.
Definition 3: A network is said to be a layered networkwith

layers, if there exists a partition of the vertex set into subsets
such that

1) denote the singleton sets corresponding to the
source and sink respectively.

2) .
3) There are edges only within a layer or between adjacent
layers. In short, if there is an edge between a node in vertex
set and a node in , then .

4) For any two nodes that lie in adjacent layers, there exists
an edge between them.

We note that a layered network may or may not have links
within a layer, however, it does have links between every pair
of nodes that lie in adjacent layers. An example of a layered
network is shown in Fig. 2.

Fig. 2. An example layered network.

Remark 1: KPP(I) Vs. Layered Networks: We note that
KPP(I) and layered networks are have non-trivial overlap. For
example, the layered network in Fig. 2 has 2 node-disjoint paths
which can be chosen in many ways. However, none of these
choices give rise to the property that these paths contain all
nodes in the network. Hence, this network is not a KPP(I) net-
work. Conversely, the simple KPP network shown in Fig. 1(a)
cannot be viewed as a special case of layered networks since
in a layered network, there are well defined layers such that
edges are only inside a layer or between adjacent layers and
such a definition is impossible in this case.
Remark 2: Two-Hop Networks: With respect to the above

network taxonomy, the well-studied two-hop relay network in
[7], [24] is a KPP(I,D) network with being the
number of relays. In the absence of a direct link, the two-hop
relay network is a special case of KPP(I) network. On the other
hand, if we have a two-hop relay network with direct link but
make the additional assumption of relay isolation (as in [16]),
then it is a KPP(D) network with .

D. Background

We refer the reader to Section II-A.1 of [1] for a background
on the diversity-MG tradeoff (DMT).
1) Cut-Set Bound on DMT: For each of the networks de-

scribed in this paper, we can obtain an upper bound on the DMT,
based on the cut-set upper bound [2], [33] on mutual informa-
tion, which applies to both full and half-duplex networks. This
was formalized in [9] in the context of DMT as follows:
Lemma 1.1: Let be the rate of MG at which communica-

tion between the source and the sink is taking place. Given a cut
, there is a channel matrix connecting the input terminals
of the cut to the output terminals. Let us term the DMT corre-
sponding to this matrix as the DMT of the cut, . Then
the DMT between the source and the sink is upper bounded by

where is the set of all cuts between source and destination.
2) Amplify and Forward Protocols: An AF protocol is a

protocol in which each node in the network operates in an am-
plify-and-forward fashion. Let the protocol operate for time
instants. Such protocols induce a linear channel model between
the vector of symbols transmitted by the source and the vector
of symbols received by the sink of the form:

(3)
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TABLE I
PRINCIPAL RESULTS SUMMARY

where denotes the signal received at the sink, is the
noise vector, is the induced channel matrix and

is the vector transmitted by the source.
Definition 4: Given a random matrix of size , we

define the DMT of the matrix as the DMT of the associated
channel where is an -length received column
vector, is an -length transmitted column vector with total
power constraint and is a column vector. We
denote the DMT of matrix by .
A schedule is necessary to determine when a given node will

transmit or receive. Once a schedule is specified, the nodes
while listening, store the data received in their buffers, and
transmit the oldest symbol in the buffer (after scaling by a
constant value to meet the power constraint) when they get a
transmit opportunity2. Therefore this scheme does not require
any channel state information (CSI) at the relays. It turns out,
as pointed out in [7], that the value of the scaling constant
does not affect the DMT of the network and will therefore be
assumed to be equal to one3.
Remark 3: Coding to Achieve DMT: As pointed out above,

the scheme is fully specified by specifying the protocol. It
should be noted, however, that in the induced channel model

the transmitted symbols need to be coded in
order to achieve the proposed DMT. This coding is performed
only at the source and DMT-optimal codes for point-to-point
channels can be used here.

E. Some Results From a Related Prior Paper

In a related previous paper [1], we developed basic results
that will be instrumental in deriving the DMT of certain classes
of networks in the present paper. Two results from [1] that we
will draw upon throughout the paper, are reproduced here for
convenience.
The first result formalized in the theorem below, is that the

correlated noise encountered at the sink of many AF protocols
can be treated as white in the scale of interest.
Theorem 1.2: [1]: Consider a channel of the form
, with , where the are i.i.d.

random vectors, and where each entry of the
random matrix is a polynomial function of some underlying

2We assume that the network is in operation for sufficient amount of time, so
that if an edge is active, the node at beginning of the edge always has a symbol
to transmit.
3The value of this scaling constant does, however, affect the finite SNR per-

formance, a detailed study of which is beyond the scope of the present paper.

i.i.d. complex Gaussian random variables . Then
the DMT of the channel is the same as the DMT of
the channel where is now a random
vector.
We also proved a result pertaining to the DMT of

block-lower-triangular (blt) matrices. The -th sub-diag-
onal matrix, of a blt matrix whose th entry is
the matrix , is defined as the matrix comprising only of
the block-entries with zeros
everywhere else. The last sub-diagonal is the sub-diagonal
corresponding to the largest , such that is non-zero. We
now state the result on blt matrices:
Theorem 1.3: [1]: Consider a random blt matrix having

component matrices of size . Let
be the size of the square matrix . Let be the diagonal part
of the matrix and denote the last sub-diagonal matrix of
. Then,
1) .
2) .
3) In addition, if the entries of are independent of the
entries in , then

F. Results

In this paper, we present simple communication schemes
for KPP and layered networks and analyze the DMT of these
schemes. The principal results of the paper are tabulated in
Table I. In many cases, the DMT achieved equals the cut-set
bound and the scheme is thereby optimal. In all these cases,
it turns out that the half-duplex constraint does not entail any
penalty in the DMT performance of these networks. Also, the
network DMT can be achieved using existing, explicit coding
schemes. Furthermore, we analyze networks with multiple
antenna nodes for which we provide an achievable scheme
and compute the associated DMT. Some of these results were
presented in conference versions of this paper [18]–[21] (see
also [22], [23]).

G. Outline

In Section II, we focus on half-duplex KPP networks and
present protocols achieving the network DMT for .
We extend this result to KPP(D) networks in Section III. In
Section IV, KPP(I) networks with half-duplex relays are con-
sidered, and schemes achieving network DMT are presented
for KPP(I) networks allowing certain types of interference. In
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Section V, we use the schemes for KPP networks as a building
block to construct schemes for layered networks and show that
a linear DMT between maximum diversity
andmaximumMGof 1 is achievable. In Section VI, we consider
multi-antenna layered andKPP networks and give an achievable
DMT. Finally, in Section VII, we show that explicit CDA based
codes can achieve the DMT of all the proposed protocols.

II. HALF-DUPLEX NETWORKS WITH ISOLATED
PATHS—KPP NETWORKS

In this section, we consider KPP networks with single-an-
tenna nodes operating under the half-duplex constraint. We
begin by stating the main result:
Theorem 2.1: For a KPP network, there exists a scheme

achieving the cut-set bound of if or
and , where is the length of path

.
The remainder of the section is dedicated to proving this

result. First, observe that the cut-set upper bound on DMT
(Lemma 1.1) for the class of KPP networks is given by:

, and therefore it is sufficient to design
protocols that attain this bound.

A. Protocols for KPP Networks

As noted in the introduction, we restrict our attention in this
paper to the class of AF protocols under which node operations
are restricted to scaling and forwarding. To completely specify
the protocol, it remains only to identify a schedule. We will
consider periodic schedules, i.e., schedules in which edge ac-
tivations are periodic with period . Let
denote the set of time instants (which we will refer to as
“colors”). The protocol can be described as a coloring scheme,
where denotes the time instants during which edge
is active, i.e., node transmits and node listens (where

). A simple protocol for a KPP network is defined
as a half-duplex protocol, where at any node, at any given time
instant, only one of the incoming or outgoing edges is active.
The main idea is that a simple protocol avoids broadcasting at
the source and interference at the destination. While the reason
for avoiding interference at the destination is obvious, we also
avoid broadcasting at the source to ensure that each path for-
wards distinct symbols. Thus any edge coloring satisfying the
following constraints is a simple protocol:

(4)

(5)

(6)

(7)

An example of a simple protocol with and
for all , is shown in Fig. 3. Thus in this example, there

are four paths, edge activations are periodic with period 4 and
each edge is activated once in each cycle. The label alongside
each edge indicates its color, i.e., the time instant during which
the edge is activated.
While a simple protocol avoids interference at the receiver,

there could be interference at some of the intermediate nodes,

Fig. 3. KPP network simple protocol.

Fig. 4. Back-flow on a path.

which we term as back-flow. For example, consider a KPP net-
work and let be four consecutive vertices lying on
one of the parallel paths. In a simple protocol, at a given
time, let and transmit, thereby causing the edges
and to be active. Due to the broadcast and interference
constraints, transmission from interferes with the reception
at . This is termed as back-flow, and is illustrated in Fig. 4.
Back-flow can be avoided by ensuring that there are at least two
inactive edges between any two active edges along a backbone
path:

Lemma 2.2: If a simple protocol, operating on a KPP net-
work, satisfies the constraints listed below, then it achieves the
optimal DMT of :
1) A single symbol is transmitted from the source in every
time slot, i.e., .

2) An equal number of symbols are transmitted through all
the backbone paths, i.e., .

3) The protocol avoids back-flow.
Proof: The listed conditions ensure that the induced

channel between the source transmission and reception, after
permutation of symbols and accounting for delays, can be
described as:

. . .
(8)

where denotes the product fading coefficient of the path ,
and is the noise vector at the sink. The DMT of this channel
is equal to the DMT of the above matrix since the noise is
white in the scale of interest (see Theorem 1.2). The DMT of
can be easily computed to be .
Remark 4: It should be noted that while each scalar symbol

goes through only one of the paths, it should be noted that the
are the output of the coding at the source, which ensures that
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each uncoded symbol passes through all -paths thus providing
full diversity.
Remark 5: Back-Flow: The condition (3) in the theorem can

be dropped for KPP networks, due to Lemma 2.3, proved later.
However, we keep the condition here because of its application
to KPP(D) networks later. Furthermore, while back-flow does
not degrade the DMT, it can hurt finite SNR performance.

B. The Case of

For the case of it turns out that we can always design
a simple protocol which avoids back-flow. We design a generic
protocol with colors, as follows: three colors

are cyclically repeated on path , except for the
last edge of the path where we use color . We use a potentially
different color on the last edge to ensure that the relays transmit
to the sink at distinct time instants. Thus

(9)

and hence we use as descriptors
of the simple protocol. For the case of , setting

and yields a
simple protocol. Here the color index should be taken modulo
whenever it strictly exceeds . It can be easily checked that

the protocol satisfies all conditions of Lemma 2.2 and hence
achieves the DMT .

C. The Case of

We established that when , there are simple protocols
avoiding back-flow which achieve the network DMT. This is
not the case in general when . In particular, avoiding
back-flow is not possible in all KPP networks with .
Therefore, we analyze the effect of back-flow and show that
back-flow does not cause any loss in DMT performance.
Lemma 2.3: Consider a KPP network operating under a

simple protocol, which on neglecting the effect of back-flow,
induces a block-diagonal channel matrix. Then, the DMT of the
protocol taking into account the effect of back-flow, is lower
bounded by the DMT when neglecting the effect of back-flow.

Proof: The presence of back-flow creates entries in the
strictly lower-triangular portion of the induced channel matrix.
Since the DMT of a lower triangular matrix is lower bounded
by the DMT of the corresponding diagonal matrix (by Theorem
1.3), we have that the system with back-flow will yield a DMT
no worse than the one without back-flow.
Remark 6: Effect of Back-Flow at Finite SNR: While the

presence of back-flow does not alter the DMT of the protocol
(which is a high SNR characterization), it does impose sev-
eral practical issues including the low-to-moderate SNR perfor-
mance (which is affected by the power spent in re-forwarding
of past information) and the complexity of decoding incurred.
While we show in Section VII that to some extent the com-
plexity issue can be addressed, a detailed study is beyond the
scope of this work and is deferred for future work.
We will now exploit Lemma 2.3 to construct a protocol

achieving the cut-set bound for the KPP network with .
Without loss of generality we assume that the paths are ordered

such that for the first paths, followed by the
other paths. We design our protocol depending on .
1) Case 1: We will specify the protocol
by specifying the activation sets
and for all . We begin by setting to be the natural
choice: . The set of colors used is

. For ,

For ,

For ,

This protocol avoids back-flow, uses all paths equally, and
transmits fresh symbols in every time-slot. By Lemma 2.2,
this protocol achieves the cut-set bound.

2) Case 2:
For , it turns out that back-flow cannot be avoided
and hence we resort to a protocol that allows back-flow.
Consider the protocol having the following descriptor:

and .
After this assignment, we make the following modifica-
tions to ,

It can be checked that the protocol satisfies the first two
conditions of Lemma 2.2.While condition 3 is not satisfied
because back-flow is present, by Lemma 2.3, back-flow
does not worsen the DMT and therefore, the protocol
achieves the cut-set bound on DMT.

D. The Case of

We now handle the case of . As in the previous case, it
turns out that it is impossible to construct simple protocols that
avoid back-flow. Furthermore, it is not even possible to con-
struct a simple protocol that transmits a distinct symbol at each
time slot. We present a construction that maximizes the rate of
transmission of distinct symbols (i.e., MG).
Theorem 2.4: For a KPP network with , if the two path

lengths are equal modulo 2, then a DMT of
is achievable. In the case of unequal path lengths, a DMT of

is achievable, where .
Proof: Let be the number of edges in each path,

with . It is convenient to relabel the edges in
the network so as to form a cycle of length

. The specific relabeling is given by
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We associate edge with coloring subsets
respectively with a single constraint,

(10)
that simultaneously satisfies orthogonality at source, sink and
the half-duplex constraint.
Case 1: : For this case we choose 2

as the cycle length of the protocol in our construction. Accord-
ingly let the set of colors be . Set

which essentially corresponds to coloring the cycle formed by
the network alternately with the two colors and .
Case 2: : The coloring prescribed

in Case 1 does not work here, since the cycle is of odd length.
Therefore, we resort to a different coloring in this case. This
construction transmits symbols in time slots and
therefore has a rate of . We use the set of colors

, where . We will create the sets
using the following algorithm. In the algorithm, whenever we
refer to , with , we mean

and with , we mean .
Construction 2.5:

Step 1: .

Step 2:

;

for to in steps of 1:

for to in steps of 1:

if is odd, ;

if is even, ;

end for.

;

end for.

Consider Case 1 in the construction above. It is clear that a
symbol is transmitted from the source in every time slot. Also
the sink receives a symbol in every time slot alternately from
one of the paths. Thus first two conditions of Lemma 2.2 are
satisfied, whereas back-flow is not avoided by this protocol. By
invoking Lemma 2.3, the proof follows. A similar analysis of
Case 2 in Construction 2.5 reveals that a DMT of

can be achieved in the unequal path length case, since
the rate (maximum MG) of the protocol is .

III. HALF-DUPLEX KPP NETWORKS WITH DIRECT LINK

In this section, we consider KPP networks with a direct link
between source and the sink. All other assumptions in previous
section, such as single-antenna nodes, and half-duplex operation
hold good here as well.
Theorem 3.1: For KPP(D) networks, the cut-set bound on

DMT is achievable whenever .
Proof: When , we have established that there exists

a simple protocol for the KPP network that avoids back-flow.

When applied to the backboneKPP network, this protocol yields
an induced channel matrix that is a diagonal matrix with the
path gains appearing cyclically along the diagonal. In the

presence of a direct link, as is the case here, clearly it is the path
gain of the direct link that will appear along the diagonal
of the induced channel matrix. The path gains of the backbone
paths will appear in general below the main diagonal. However
it is not hard to see that by suitably delaying symbols along each
of the paths, the path gains can be made
to appear cyclically along a single sub-diagonal, say the -th
sub-diagonal, as shown below:

. . .

. . .
. . .

Next, consider the situation when the network is operated for
a duration of time-slots, for some positive in-
teger . We now invoke Theorem 1.3 to the induced channel
matrix to arrive at a lower bound on the DMT as,

which, as tends to infinity, becomes

(11)

For KPP(D) networks, the cut-set upper bound on DMT
(Lemma 1.1) yields . Combining this
with the DMT lower bound (11), we get .

Remark 7: Since a two-hop relay network possessing re-
lays with direct link and with relays isolated is a KPP(D) net-
work with , the DMT optimal strategy for these family
of networks is given by Theorem 3.1. This turns out to be the
same strategy as the slotted-amplify-and-forward (SAF) pro-
tocol given in [16] for these networks.

IV. HALF-DUPLEX KPP(I) NETWORKS

We consider KPP(I) networks under the half-duplex con-
straint. KPP(I) networks have the additional complexity that
the backbone paths are not necessarily node disjoint and
hence may have cross-links between relays that are a source of
interference, see Fig. 1(b). As pointed out earlier, the definition
of this class of network precludes the possibility of cross-links
either between the source and relays or else between the des-
tination and relays. Cross-links are permitted only between
relays. Therefore, the cut-set bound (Lemma 1.1) that separates
the source and the relays gives the same DMT upper-bound

, as in the case of KPP networks. In this
section, we will show that this DMT is in fact, achievable:
Theorem 4.1: Consider anyKPP(I) network with . The

cut-set bound on the DMT is achievable.
The rest of this section is devoted to providing a proof to this

statement. In the case of KPP networks, simple protocols en-
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Fig. 5. Regular network and the associated protocol.

sured that there is no interference between the scheduled links,
however this will not be possible in KPP(I) networks. We will
develop alternate mechanisms to deal with interference.

A. Special Case: Regular Networks

We first study a special class of KPP(I) networks called reg-
ular networks, for which the protocol and analysis contains the
key intuition required for solving general KPP(I) networks.
Definition 5: If in aKPP(I)network, each relayingpathhas the

samenumber of relays (say ) so that the relays at distance from
the source can be clubbed together into layer , and further, inter-
ference links exist only between adjacent layers or else, within
a layer, then the network is called a regular network.
An example of regular network is shown in Fig. 5.
We will now show that for regular networks, it is possible to

achieve the cut-set bound on DMT. We first describe a simple
protocol for the backbone KPP network (see Section II). The
cycle length of the protocol is , and hence we use the set of
colors . The color for edge is given
by,

(12)

where the subscript is computed modulo . The col-
oring scheme for an example regular network is demonstrated
in Fig. 5.
It can be verified that the protocol satisfies the conditions of

Lemma 2.2 and thus achieves the cut-set bound on the back-
bone KPP network. The channel matrix induced by this scheme
on the backbone network is a diagonal matrix thereby making
it easy to compute the DMT. However, in the presence of in-
terference links, which is the case in the KPP(I) network con-
sidered here, the matrix is no longer diagonal but has non-diag-
onal terms as well due to the presence of interference links. In
the case of a regular network, the interference does have a spe-
cial structure that can be exploited. Any symbol transmitted by
the source is first received at the destination from the backbone
path, and then received from other paths. This implies that the
interference terms are present only on the lower-triangular en-
tries of the matrix. Now, we can use Theorem 1.3, which shows
that the DMT of this lower triangular matrix is lower bounded
by the DMT of the diagonal matrix, in which interference terms
are absent. Thus we get, the DMT of the proposed protocol on
the regular network is

(13)

where denotes the DMT on the backbone KPP network.
This lower bound also equals the cut-set bound and therefore

and the protocol achieves the network DMT
for any regular network. Thus we have the following theorem.
Theorem 4.2: The optimal DMT of

-regular networks is achievable using a simple protocol.
Corollary 4.3: For a two-hop relay network without direct

link, the optimal DMT is achieved by a simple protocol.
Proof: The two-hop relay network without the direct link

is a -regular network, where denotes the number of
relays in the network. This holds irrespective of the presence of
links between relays, since they only contribute to intra-layer
links. Thus the result follows from Theorem 4.2.
Remark 8: The result in Corollary 4.3 was also proven in a

parallel and independent work [26]. The protocols used in this
paper and in [26] are essentially the same as the SAF protocol
[16], except that the protocol is applied to a network that does
not have a direct link. However, the proof techniques used here
and in [26] are very different.

B. General KPP(I) Networks

We now proceed to generalize the ideas from the regular net-
work case to an arbitrary KPP(I) network. The basic idea idea
for the regular network was that the simple protocol for the
backbone KPP network ensured that the interference pattern
falls only on the lower-triangular portion. This will remain the
basic idea even for general KPP(I) networks.
Given a KPP(I) network, we can choose a backbone KPP net-

work such that the network is a union of a backboneKPPnetwork
with additional edges connecting the paths.Weassume that the
network is operated by a simple protocol designed for the back-
bone KPP network, i.e., the protocol is designed to work in the
absence of interference. Our aim now is to study the effect of the
same protocol being used in the presence of interference. Every
symbol transmitted by the source has an intended backbone path
through which it is expected to reach the destination. However,
on account of the interfering links, the symbolwill typically have
more thanonepath throughwhich topropagate to thedestination.
1) Causal Interference: In general KPP(I) networks, proto-

cols that create “causal interference” enforce a certain favorable
structure on the interference.
Definition 6: Given a KPP(I) network, a simple protocol de-

signed for its backbone KPP network is said to create causal
interference in the KPP(I) network if the unique shortest delay
experienced by every transmitted symbol is through a backbone
path. Such a protocol will be termed as a causal protocol.
In the absence of interference, a simple protocol for a KPP

network will induce a diagonal channel matrix. It follows that
under the assumption of causal interference, the channel matrix
induced by the protocol will be of lower-triangular form, since
all the interfering paths incur a larger delay in comparison with
the backbone path.
Lemma 4.4: If a protocol for a KPP(I) network achieves

DMT in the absence of interference (i.e., when operated
on the backbone KPP network), then the protocol will achieve
a DMT , in the presence of causal interference.

Proof: Let be the channel matrix induced by the pro-
tocol in the backbone KPP network. Since there is no interfer-
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ence, this channel matrix is diagonal. When the same protocol is
employed on the network with causal interference, the induced
channel matrix will be lower-triangular. By applying The-
orem 1.3, we get

(14)

2) Case: We now turn to constructing a protocol for
a general KPP(I) network. We begin with the case . We
will then go on to generalize this for the case . Even the

case turns out to be significantly more involved than was
the case with regular networks.We state the main result here and
defer the detailed proof to the appendix.
Theorem 4.5: For any KPP(I) networks with , there

exists a causal protocol that achieves the cut-set bound
.

Proof: The idea of the proof is to construct a protocol that
incorporates delays at the relaying nodes so that the resulting
interference pattern when viewed from the destination appears
causal, i.e., the end-to-end channel matrix is lower triangular.
The detailed proof appears in Appendix A.
3) General : We now consider general KPP(I) net-

works with . For , the KPP network is first pre-pro-
cessed using Lemma A.1 in Appendix A. We then time share
between all possible 3-PP subnetworks, for each of which,
we use the causal protocol proposed in Theorem 4.5. The in-
duced channel matrix is a lower triangular matrix with all the
product coefficient repeated times along the diagonal,
with strictly lower-triangular terms involving causal interfer-
ence. By Theorem 1.3, the DMT of this matrix is no worse than
that of the diagonal matrix alone which is .

V. HALF-DUPLEX LAYERED NETWORKS

In this section, we consider half-duplex layered networks.
Full-duplex protocols may be modified to deactivate alternate
layers in order to satisfy the half-duplex constraint; but that will
lead to a MG loss of a factor of two. If back-flow is taken into
account, then the MG loss factor may be as large as three. We
will demonstrate in this section that there exists static schedules
for which this MG loss is not incurred.
Theorem 5.1: For a layered network with at least 2 relays in

each layer, a linear DMT of between maximum
diversity and maximum MG of 1 is achievable using a
static schedule.

Proof: The basic idea is to time-share between various
-regular subnetworks of the network. Consider an fc lay-

ered network with layers. Let there be antennas in the -th
layer for . We consider the source as layer 0,
and sink as the -th layer so that . Let

be the number of fading
coefficients between the -th and th layer of relays.
A path from source to sink in a layered network is said to be

forward-directed if all the edges in the path are directed from
-th layer to -th layer for some . Note that if we choose
two node-disjoint forward-directed paths, we get a subnetwork
which is a -regular network. Let denote the set of all
these forward-directed paths. Then . Let

be the product of fading coefficients on path .We con-
struct the bipartite graph corresponding to defined as follows:
1) The vertices on both sides of the bipartite graph correspond
to paths in .

2) Connect a vertex associated with path on the left to a
vertex associated with on the right if the two paths are
node-disjoint.

Lemma 5.2: The bipartite graph corresponding to has a
complete matching.

Proof: We will prove this by producing an explicit com-
plete matching on the bipartite graph. Let the relays in the -th
layer be indexed from . A forward-directed
path can be uniquely represented by a tuple , where
denotes the index of the relay in the -th layer visited by

that path. For any given path associated to the tuple
, consider a path associated to the tuple
where .

Clearly these two paths are node-disjoint, because
by definition of fc layered network. This mapping creates a
complete matching on the set of all forward-directed paths.
A path along with its partner path forms -reg-

ular network, and is activated using the protocol specified in
the proof of Theorem 4.2. Cycling through all combinations
of -regular networks, we get an induced lower-triangular
matrix, in which appears in the diagonal after
time instants. Hence, by Theorem 1.3, the DMT of the pro-
tocol where is the diagonal matrix with

on the diagonal. We compute the DMT of in the
following lemma:
Lemma 5.3: Let be the diagonal matrix with entries

, which are the product coefficients on all possible
forward-directed paths in the network. Then

(15)

where .
Proof: See Appendix B.

Thus the proposed protocol achieves a DMT of

(16)

We have that the maximum diversity is equal to the min-cut
in any network [1]. Therefore a DMT of

(17)

is achievable.

VI. NETWORKS WITH MULTIPLE ANTENNA NODES

In previous sections, we considered networks with all nodes
having single antenna. In this section, we consider the general
case of networks with multiple antenna nodes. Specifically, we
consider KPP(I) and layered networks under half-duplex con-
straints. As it is difficult to characterize the DMT completely,
we present lower bounds, i.e., an achievable DMT region.

A. Half-Duplex Layered Networks

In this section, we focus on layered networks and we will
show how the static scheduling schemes developed for single
antenna networks can be utilized in the case of multiple antenna
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networks. Note that replacing a multi-antenna relay node with
an equivalent number of single-antenna-nodes, the DMT of the
resultant network cannot increase, and in this way, lower bounds
on the DMT of single-antenna-node networks can be used to
derive lower bounds on the DMT for the multiple-antenna case.
In dealing with multiple-antenna-node networks, a key idea is

the following: At high values of MG, one should strive to create
paths that comprise a sufficient number of antennas to support as
many degrees of freedom as possible. For low MGs, we should
create paths which are comprised of single antennas so that the
effective channel has maximum diversity. Thus in general, we
should choose the number of antennas in any given path to be a
function of the MG.4

Consider a ss-ss layered multi-antenna network with an-
tennas at the source, antennas at the sink, and an-
tennas at -th layer of relays, with . In order to
vary the number of antennas in a path as a function of MG5,
we introduce the notion of partitioning. A partitioning of a
layered network is a procedure in which several nodes in a
layer are clubbed together to form a super-node. We refer to
the number of nodes within a super-node as the size of the
super-node. Partitioning could potentially include partitioning
of the source (sink) by which we mean dividing the transmit
antennas of the source (sink) into super-nodes. We term the re-
sultant network comprised of super-nodes connected through
super-edges as the super-network. For a given partitioning ,
let be the number of super-nodes in layer . The number
of super-edge-disjoint paths in the super-network is equal to the
min-cut of the super-network given by,

We will consider only those partitionings under which the re-
sultant super-network is regular. Let be the set of partitioning
that have the following properties:
1) Each layer contains at least two super-nodes (this condition
is similar to the condition that in a layered network each
layer should contain at least one node).

2) The source and the sink are un-partitioned.
3) All layers have the same number of super-nodes, . Each
super-node, except for possibly one, is formed to have a
size of .

For the resultant regular super-network, using the protocol
given in Theorem 4.2, a lower triangular channel matrix is in-
duced. This has better DMT than the corresponding block-diag-
onal matrix by Theorem 1.3, yielding the following lower bound
on DMT:

(18)

4We assume that the MG is fixed prior to operation and therefore that we can
indeed choose the partitioning scheme based on the current value of MG. This
makes practical sense because the decoder needs to be aware of the rate in order
to decode the information. When this information is passed on to the decoder,
we will assume that all the intermediate relays are also made aware of the rate.
5The idea of varying the protocol parameters depending on the MG was

used in [10] for the NSDF protocol.

where and denotes the DMT
of a product of independent Rayleigh matrices of size

, which can be computed using the
techniques given in [15]. The justification for retaining the term

as part of themaximization is because by adopting
the matching-forward-directed-paths strategy in the presence of
multiple antennas at the source and sink (see Theorem 5.1) we
can achieve this lower bound.

B. KPP(I) Networks

In this section, we consider KPP(I) networks with all nodes,
including the source and the sink, having multiple antennas. We
can use the same optimal protocol for single-atennna KPP(I)
networks with , notwithstanding the fact that the re-
lays contain multiple antennas. Though this scheme works well
when all nodes have the same number of antennas, this is no
longer optimal for case with different number of antennas at
each node. Unlike the scheme of choosing different paths de-
pending upon MG, as in Section VI-A, we wish to consider a
generic scheme where path is activated for a fraction of the
duration. For , we will assume that all paths are equally
activated, thus the only achievable fractions of activation are

. For , we will do time-sharing among all the
3PP sub-networks with different fractions of activation. Since
we use the 3PP network as a basic unit, any path within a given
3PP network is activated one-third fraction of the duration for
which that 3PP is activated. Thus any fraction of time of ac-
tivation, is limited to be less than . In fact, we can show
that all time fractions are feasible as long as

where

(19)

This is shown in Appendix C.
Let be the fading matrix on edge . Let the product

of fading matrices along backbone path be . Then
. Let the DMT of this path be defined as the DMT of

this product matrix , which can be computed according
to formulae for the Rayleigh product matrix given in [15]. The
channel matrix induced by the scheme will be block-lower-tri-
angular, and by invoking Theorem 1.3, and result for the the
DMT of a MIMO parallel channel with repeated coefficients in
[1], we obtain a lower bound on the DMT of the protocol as,

(20)

VII. CODE DESIGN

In this section, we demonstrate codes that the source needs to
utilize in order to achieve the DMT promised in the earlier sec-
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tions. While a random Gaussian code will do the job, the focus
here is on codes with shorter block length and lower decoding
complexity.

A. DMT-Achieving Codes

Consider any network and AF protocol described above, and
let us say the network is operated for slots using such a pro-
tocol to obtain an induced channel matrix where
is a vector and are vectors and is

a matrix. However, to achieve the DMT of this induced
channel one needs to code over both space and time, i.e, transmit
a matrix drawn from a space-time (ST) code as opposed to
just sending a vector. In order to obtain an induced channel with
being a matrix, we do the following: Instead of trans-

mitting a single symbol, each node transmits a row vector com-
prising of symbols during each activation. Then the induced
channel matrix takes the form: , where is now
an matrix, are matrices with channel ma-
trix remaining as before. We will regard the product as
representing the block length of the ST code since the trans-
mission of code matrix takes place over channel uses.
Now from [12], we know that if the code matrix is drawn

from an approximately universal code , then the code will
achieve the optimal DMT of the channel matrix irrespective
of the statistics of the channel. Explicit minimal delay approx-
imately universal codes for the case when are given
in [13], constructed based on appropriate cyclic division alge-
bras (CDA) [17]. These codes can be used here to achieve the
optimal DMT of the induced channel matrix, thus providing an
explicit communication scheme from end-to-end. Recent work
[32] on decoding algorithms for these approximately universal
codes has shown that these codes can be decoded efficiently
using a regularized lattice decoder, whose computational com-
plexity is linear in the rate.

B. Short DMT-Optimal Code Design

If the channel is block diagonal, then we can use shorter
block-length codes designed for the MIMO parallel channel in
[30], [31]. This construction is shown to be approximately uni-
versal in [14]. If the channel is block-lower-triangular, as is the
case for all the protocols considered in this paper, then we can
use the parallel-channel coding scheme along with a successive
decoding scheme, where each block that achieves the full DMT
is decoded separately and its effect subtracted from the next
block. This scheme does suffer from error propagation, since
if we decode blocks, the error probability gets multiplies at
most by a factor of . However, this does not affect the SNR
scaling and therefore does not affect the DMT.

APPENDIX A
PROOF OF THEOREM 4.5

We begin with some definitions. All these definitions are with
respect to the graph of a KPP(I) network, and their scope is
limited to this proof.

Definition 7: A partition is defined as a set of nodes
obtained by selecting precisely one node from each of the
parallel paths.

We use the term partition here in the sense of a boundary
separating one part of the graph from the other, although we do
permit edges to cross the partition. The nodes on each backbone
path can be assumed to be ordered from left to right. Therefore
it is meaningful to speak of nodes that are to the left of the
partition and nodes that are to the right of the partition. We use
this natural partial order on the set of nodes to define a partial
order on partitions.

Definition 8: The set of nodes to the left of a partition
is denoted as , and the set of nodes to the right of is
denoted as . A partition is said to be on the left of
another partition if . The set of nodes in
between and with being to the left of are precisely

.
Definition 9: Two partitions with to the left of
are said to form a stage, if there are no links between

and and there are no links between and ,
i.e., no links cross either partition. Then is called the left
partition of the stage, and is called the right partition
of the stage, . Nodes in between and are called
the internal nodes of the stage.

Definition 10: Fix an order among the parallel paths of
the network. Given a subset , a KPP(I) net-
work restricted to is defined as the induced subgraph con-
sisting of nodes present in the parallel paths specified by the
set . We may also say that KPP(I) network is restricted to the
parallel paths specified by .

Definition 11: (k-Switch): Consider a KPP(I) network re-
stricted to parallel paths. Let and be two par-
titions on the restricted network, such that is to the left of
. Construct a bipartite graph between set of nodes in and

that in as follows. We draw an edge in the bipartite graph,
between a node in and a node in if the corresponding
nodes are connected by an edge which does not lie on any back-
bone path. However, if partitions share a node on a particular
backbone path, we do not draw an edge between them. If the
bipartite graph has a complete matching, then the two partitions
are said to form a -switch, in the restricted network.
are called the left and the right partitions of the
-switch respectively.
Definition 12: A -switch in a KPP(I) network restricted

to parallel paths is said to be contiguous if there are no nodes
in between the two partitions on any of the backbone paths
in the restricted network. Otherwise, the -switch is said to be
non-contiguous.
Examples of a 3-switch in a 3PP network is shown in the

Fig. 6.
Having the necessary definitions in place, we now proceed

to specify a protocol for a 3PP network in terms of delays in-
troduced at nodes as well as a schedule of edge activations. We
recall that a 3PP(I) network can be viewed as a union of a back-
bone 3PP network alongwith links that connect between various
nodes in the network, which we will term as interference links.
The particular schedule is obtained for a given 3PP(I) network
in three steps, as described below:

1) Step 1—Preprocessing: We begin by deactivating
nodes in backbone paths that are part of non-contiguous
switches, and redefining backbone paths to include shorter
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Fig. 6. Examples of 3-switches in KPP(I) networks (a) Non-contiguous
3-switch (b) Contiguous 3-switch.

paths. By deactivating a node, we mean that we will request the
node to never transmit. Since there are no transmissions from
that node, it can be effectively deleted from the graph. This will
lead to a graph in which no two nodes in a given backbone path
are connected by a shorter path independent of the backbone
path. The below lemma, though we need it only for , is
stated in a general setting.

Lemma A.1: Any KPP(I) network can be converted to
a second KPP(I) network which does not have any non-con-
tiguous -switches, for , by deactivating certain
nodes from the network and appropriately redefining the back-
bone paths.

Proof: Let us consider the given KPP(I) network. We em-
ploy the following algorithm on the KPP(I) network to perform
this conversion:
1) Identify any non-contiguous -switch in the network for
any . If there are no non-contiguous -switches
in the network, terminate the algorithm.

2) Given a non-contiguous -switch, re-define the backbone
path in such a way that the segment of the newly-defined
backbone paths lying in between the left and right parti-
tion are precisely the edges corresponding to the complete
matching. After redrawing the KPP network, it can be seen
that there are nodes which are a part of none of the back-
bone paths. Deactivate these nodes. Since the -switch was
non-contiguous, there exists at least one such node. It can
be readily verified that this reconfiguration does not affect
the number of backbone paths.

3) Repeat Step 1).
This algorithm clearly terminates, since it deactivates at least

one node during each iteration and there are only a finite number
of nodes. It is for this reason, that this procedure excludes con-
tiguous switches where there will be no node to deactivate. Note
that throughout the iterative process, the number of backbone
paths has always remained fixed at .
The above lemma establishes that it is indeed possible to

remove all non-contiguous switches for any given KPP(I)
network.

2) Step 2—Decomposition Into Stages: After prepro-
cessing the network, we decompose the network into stages.
As we shall see later, this decomposition of network into stages
will be very useful in identifying a DMT optimal schedule for
the network.

Definition 13: A network is said to be decomposed into
a set of stages if all the nodes of the network
graph can be split into into stages such that

for every .

Fig. 7. T-3 stages in KPP(I) network with (a) Case 1 (b) Case 2.

Now, we attempt to decompose a given 3PP(I) network into a
set of stages with each stage having certain properties that will
be useful for us to obtain an efficient schedule for the network.
We note that, the set of nodes that are adjacent to the destination
and the destination itself form a stage, called sink stage. All the
nodes in the sink stage other than the sink form the left partition,
and the right partition contains the sink and any other two nodes.
An analogous definition yields the source stage.

Remark 9: The definition of a stage does not preclude the
possibility of having interference links connecting nodes within
a partition. We will prove later that such interference links will
not present non-causal interference. With this foresight, we will
neglect the links present on partitions for now and later return
to demonstrate that these do not change the causal nature of the
interference.
The decomposition of 3PP(I) network into stages will be car-

ried out in a hierarchial manner, i.e., we identify stages be-
longing to three different categories, with a category being char-
acterized by some common features. Only after we have iden-
tified all stages belonging to the first category, we will start
looking for next category of stages from the remaining nodes.

Definition 14: A stage is called a T-3 stage (short for
Type-3) if its left and right partitions either form a contiguous
3-switch or else contains two contiguous 2-switches when the
3PP(I) network is restricted to two different sets of parallel
paths. See Fig. 7 for an example. Apart from stages of this type,
we will also regard the source and sink stages as T-3 stages.
It must be noted that any pair of partitions comprising a con-

tiguous 3-switch or two contiguous 2-switches is indeed a stage.
This can be proved by contradiction, by showing that if the pair
of partitions is not a stage, then there must exist a non-con-
tiguous 3-switch or a non-contiguous 2-switch in the network,
which have been assumed to be removed in the previous prepro-
cessing step. Thus it is sufficient to identify all non-contiguous
3-switches and 2-switches to identify T-3 stages.
Having identified all T-3 stages in the network, we focus

on the induced subgraph consisting of only nodes that are not
internal to any T-3 stage. This subgraph will comprise of mul-
tiple components separated by T-3 stages. The subgraph is used
to identify the remaining stages of the network. We proceed
to identify another category of stages in these components.
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Fig. 8. Type T-2 stages in a KPP(I) network with (a) Case 1 (b) Case 2.

The following definition is with respect to a given network
component.

Definition 15: Consider a contiguous 2-switch in the
network restricted to two paths (say paths and ). Consider
the leftmost node in connected to . if there is
no such node connected , choose the rightmost node
in in the network component as . Choose as
the left partition and as the right partition to form
a stage. We call a stage of this type as a T-2 stage, see Fig. 8 for
two examples of T-2 stages.
The definition assumes that the given choice of partition in-

deed forms a stage. This can be proved using the fact that the
component does not contain any T-3 stage. Continuing the hi-
erarchial decomposition into stages, we now focus on the in-
duced subgraph consisting of only nodes that are not internal to
any T-3 or T-2 stage. Once again, we are left with remaining
network components. Any such component does not contain a
stage of type T-2 or T-3 and is thus guaranteed not to have any
switches. We proceed to decompose further as follows:
If there are no interference links in the given component, then

the whole component is treated as a stage. An example of such
a stage is given in Fig. 9(a). If there are interference links, we
pick a backbone path to which this link is connected and label it
as . Find the rightmost node in , say , that is connected
to an interference link. Let the other end of this interference link
be connected to a node in a second backbone path, which we
label as . Conceivably, node could be connected via other
interference links to nodes in path that lie to the right of node
. If this is the case, then we choose the rightmost such node

and relabel this node on path as node . Then we do the
following to identify a stage from the component:
1) If there are no interference links connecting to a node on

to the right of , then and the rightmost node
of the remaining backbone path in the component, form
a left partition; this left partition along with the rightmost
three nodes of the component acting as the right partition,
can be verified to be a stage. An example of such a stage is
given in Fig. 9(b)

2) If there is an interference link connected to a node on path
that is to the right of , this interference link must

originate from the remaining backbone path since the

Fig. 9. T-1 stages in KPP(I) network with (a) Case 1 (b) Case 2 (c)
Case 3.

network component does not contain any switches; choose
the leftmost node in connected to the right of ;
this node could potentially be connected to multiple nodes
in . Let be the leftmost node in connected to
. Now set and as the three nodes for the

left partition and and as the three nodes for
the right partition. An example of such a stage is given in
Fig. 9(c).

A feature of the stages produced by this last step is that no
switches are contained within the stage and we will label such
stages as Type-1 stages (T-1). Also, the procedure of identifying
a T-1 stage starts with the identification of an interference link,
and the T-1 stage so obtained will encompass the interference
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link. Since there are only finite number of interference links,
the hierarchial procedure will result in the decomposition of the
entire network into stages of type T-3, T-2 or T-1.
Once the network is decomposed into stages, we assign colors

to edges, indicating their activation pattern, as well as delays to
nodes.

3) Step 3—Assigning Colors and Delays: In this final step,
we construct the protocol for the given network by suitably as-
signing to each edge, a color that represents the activation time
slot. We also introduce delays at node in order to make the pro-
tocol causal. Note that the given network does not possess any
non-contiguous switches and that the network has been decom-
posed into stages, , with each stage being of
type T-1, T-2 or T-3.
A protocol will yield only causal interference if at every node

where there is an interference link branching out from the back-
bone path, the shortest delay from the node to the destination
through the branch-out link is strictly greater than the delay on
the backbone path. It is easily seen that this condition does not
depend on the network to the “left” of this node. For this reason,
in designing the protocol, we can begin at the rightmost node
and make sure that this condition is satisfied for all nodes.
Hence, to construct the protocol, we start from the rightmost

stage and proceed toward left stages, assigning colors to
edges and delays to nodes in each stage. At the end of this
process, we will obtain a protocol for communication, where
every node will be given a delay that must be added to every
symbol that it receives and every edge will be given a color (or
equivalently, a time slot) to amplify and forward the last symbol
that it received. As in 3PP network, the protocol will have a
cycle length of 3, and the colors are denoted as and in
the order of time slots. It must be noted that the delays assigned
to a node and colors assigned to edges on either side of the node
are not independent to each other. We adopt the convention that
a delay of zero at a node corresponds to edges on either side of
the node in the backbone path transmitting consecutively(for in-
stance, if they have been assigned colors and respectively,
then that corresponds to zero delay). If edges on either side are
assigned colors and respectively, that means that the delay
at the node is 1. Under this convention, a node can be assigned
any delay other than , without violating the half-du-
plex constraint at the node.
Before explaining the details, we first provide an outline of

how delays are added to nodes in each of the stage, as we move
from right to left. Assume that we reach a stage .
1) From any node in the stage, we will make sure that the
delay to the right partition, along the particular backbone
path on which the node is situated, is strictly less than the
delay to the right partition on any other path that might
lead from the same node (In making this assessment, we
will ignore any links connecting nodes within a partition as
noted in Remark 9).Wewill ensure this by adding delays to
the three nodes in the right partition of the stage, which we
will denote by , where is a three-component vector
comprising of the three delays to be added. We refer to this
as right-compensation of a stage.

2) We will further add delays to the nodes in the left partition
so that the delays incurred in traveling from left

partition to right partition along any of the backbone
paths is the same. We refer to this as left-compensation of
the stage. It is easy to see that adding delays on the left
partition does not change the right compensation of the
stage, because the delays added to nodes in left partition
will not affect the schedule of activations of edges within
the stage.

Wewill take a quick look into how delay compensation works
in different categories of stages. For T-1 stages, it can be easily
proved that there exists delays that can lead to right-compensa-
tion and left-compensation. Further, if is a right compensa-
tion vector for the T-1 stage, there exists another right compen-
sation vector such that and differ in only one compo-
nent and even in that component the difference in the values is
equal to onemodulo three. This is because the T-1 stage can con-
tain at most one interference link, and hence there will always
be a node that is not affected by this link. We will utilize this
degree of freedom in choosing the right compensation vector
for T-1 stages later. However, as it turns out, just adding delays
is not sufficient for stages containing switches, i.e., for T-3 and
T-2 stages. So for these stages, we resort to “neutralizing” all
interfering links by carefully designing the protocol. An inter-
ference link is considered neutralized under a protocol, if the
receiving node of the interference link is scheduled to receive
at a different time than the time during which the transmitting
node is active. We will explain this process in detail in what fol-
lows by detailing how the delays, and colors are assigned within
each stage.
We start with the rightmost stage , the sink stage, that is

comprised of three single-edge paths connecting from the back-
bone paths to the sink. We assign three colors and to
the three edges, so that the transmissions to the destination are
all orthogonal. We set as the zero vector since no left-com-
pensation is required for this stage. Whenever a stage, is
compensated and colors are assigned to the edges inside it, the
following information is passed on to the stage that is imme-
diately to its left: its left delays, and the colors on the edges
in backbone paths immediately to the right of , which
we call as right colors and which can be regarded as a vector
comprising of the three colors on the three respective, ordered,
backbone paths. Thus, the right colors and are passed to the
stage immediately to the right of sink stage.
In this procedure, we first consider the case when the -th

stage is a T-1 stage. First, the delays for right-compensa-
tion are computed. Then the delays are added to the
right partition. However, if this gives delays that violate half-du-
plex constraints (i.e., one of the delays turns out to be equal to
2 modulo 3), then the degree of freedom in the stage is uti-
lized to add more delay to a path so that the delays do not violate
the half-duplex constraint in any of the paths. Inside the stage,
the edges are colored consecutively so that there is no delay at
any node inside the stage. The left-compensation delays are
computed so that the delays on all the backbone paths become
equal. We make an additional modification in the special case
that the stage to the left is of T-3 type and all the right
colors output to stage are the same. In this case, the degree
of freedom in choosing the right compensation delays for the
stage is utilized so that the right colors of are not the
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same. The reason for this modification will become clear later
when we consider T-3 stages.
We now consider the case when is a T-2 stage. We first

color the two edges of the contiguous 2-switch on the back-
bone path with distinct colors. It can be verified easily that this
can always be done without violating the half-duplex constraint
irrespective of the right colors given to stage . This coloring
neutralizes the interference links in the stage and therefore, there
is no need for right compensation of the stage, i.e., we set
. However delays still need to be added to the right partition of
the stage since this is also the left partition of stage . Delays
are added to the right partition such that the delay on each node
on the right partition is greater than or equal to the delays .
We compute the left compensation vector to ensure that all
the backbone paths have equal delays.
As the last case, let be of type T-3. Then all the in-

terference links can be effectively neutralized if the three
edges on the backbone paths can be assigned distinct colors.
It can be easily shown that this can be done without vio-
lating the half-duplex constraint as long as the right colors for
this stage are not all the same. As an example, if the right
colors are , then we can choose the colors in stage
as . However if the right colors are ,

we cannot get distinct colors on the stage without violating
the half-duplex constraint, since no edge in is allowed to
have color . Therefore, we must ensure that the right colors
are all not the same. The right colors will not all be the same
if the stage is a T-3 or a T-2. If is of type T-1,
then it has already been modified in such a way that the right
colors of are not all same. Thus all the interference links
in the T-3 stage can be neutralized by choosing distinct colors
on the three paths. Thus, just as in the T-2 case, there is no
need for right compensation of the stage, i.e., we set .
Delays are added to the right partition such that the delay on
each node on the right partition is greater than or equal to the
delays . We compute the left compensation vector to
ensure all the backbone paths have equal delays.
Now the delay from any node in stage to its right partition

of is strictly greater than that along the corresponding backbone
path to the right partition. Once the right partition has been
reached, both paths incur equal delay (since this would have
been ensured within the stage itself). In this way, we have
ensured that in the simple protocol obtained by the above proce-
dure, the unique shortest delay experienced by every transmitted
symbol is through a backbone path. Hence the interference is
causal under the designed protocol. An example of a 3PP(I) net-
work, after decomposition into stages, coloring and delaying the
network is depicted in Fig. 10. In this figure, the numbers denote
the amount of delay to be added at that particular node. For ex-
ample, the delay of 3,indicates that the node waits for 3 time
slots (which amounts to one protocol cycle).
However, as noted in Remark 9, we have not accounted for

the interfering links between nodes within a partition while con-
structing the protocol. In the lemma given below, we justify
that interference links connecting nodes inside a partition do not
alter the causal nature of the protocol.

Lemma A.2: Assume that a protocol is designed for a
3PP(I) network by the procedure detailed above. Then the

Fig. 10. Adding colors and delay in KPP(I) network.

edges that are present within any partition of the network do
not alter the causal nature of the protocol.

Proof: It suffices to show that for any link inside a left
partition, the delay along the backbone path leading from the
tail of the interference link to the right partition is lesser than
that along any other path to the right partition from the same
node.
Let the network be decomposed into stages,

. Without loss of generality, consider an
interference link in the left partition of an arbitrary stage

connecting nodes and on the first and
second backbone paths, say and . Then focussing on the
path from , we will prove that the link under consideration
does not create any non-causal interference. By symmetry
the same will hold even if we choose . Assume that delay
encountered by a symbol forwarded via the backbone paths
and within the stage be and respectively. As part
of left compensation, let and be added to nodes and
respectively.
Any symbol which is received at is delayed for ,

and then forwarded. Then the symbol simultaneously starts
following both the backbone path as well as the path via the
interference link. Therefore the delay does not come into
picture for this relative delay comparison and we have that the
delay through the shortcut path that includes the interference
link is equal to and the delay through the back-bone
path from is . Since the algorithm detailed above ensures
that , the interference remains causal considering
the path beginning from the relay . Thus the protocol re-
mains causal even in the presence of interference link within a
partition.
This completes the proof of the theorem.

APPENDIX B
PROOF OF LEMMA 5.3

Proof: We need to compute . Let be the set
of fading coefficients of links connecting nodes in the
-st layer to those in the -th layer, . We

associate with every path an -tuple of fading coef-
ficients , where is the
fading coefficient of the th link in path . Now is related
to as .
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Consider a variable transformation where is defined such
that . Now the DMT of the parallel channel
is characterized as,

(21)

(22)

Since refers to the fading coefficient at the -th layer on
the -th path, several of the correspond to the same fading
coefficient , which is the -th fading coefficient in the -th
layer with . Therefore, in the sum above, several
of the actually correspond to the same fading coefficient.
So we define the scaling coefficient corresponding to a fading
coefficient as . Each appears in the above sum

times. Thus we get

(23)

Using Varadhan’s lemma [35], and can be written
as,

(24)

(25)

where the sets and be defined as

(26)

(27)

Simplifying as per (23), we get,

(28)

Define to obtain,

(29)

Let be the index such that . The infimum is
attained in the above minimization by

and the value of the infimum is . Thus
.

We can further show that by showing that the
optimizing in for also lies in . An optimizing
assignment of for obtaining is given by,

, for some , and we know that .
Thus

(30)

Clearly . This implies that this is the optimizing
for (20) too. Therefore, we have

(31)

APPENDIX C
DIFFERENT FRACTIONS OF ACTIVATION IN MULTI-ANTENNA

KPP(I) NETWORKS

Lemma C.1: Let , and let be the possible
combinations of 3PP networks in the given KPP network. The
extreme points of the convex region in (19) are given by vec-
tors which have only three non-zero entries equal to .

Proof: The region is convex, and thus every point in
can be expressed as a linear combination of its extreme points.
Suppose it is not the case. Then there exists an extreme point

, such that at least one entry, say without
loss of generality, is less than . But, due to constraints of the
region, this forces one more entry, say without loss of gen-
erality, to be greater than . Then clearly, such that

so that and
belong to the region . Now,

which contradicts our hypothesis that is an extreme point. This
completes the proof.
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