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Abstract—We study a wireless broadcast network, where a single
source reliably communicates independent messages to multiple
destinations, with the potential aid of relays and cooperation be-
tween destinations. The wireless nature of the medium is captured
by the broadcast nature of transmissions as well as the superpo-
sition of transmitted signals plus independent Gaussian noise at
the received signal at any radio. We propose a scheme that can
achieve rate tuples within a constant gap away from the cut-set
bound, where the constant is independent of channel coefficients
and power constraints. First, for a deterministic broadcast net-
work, we propose a new coding scheme, constructed by adopting
a “receiver-centric” viewpoint, that uses quantize-and-forward re-
laying as an inner code concatenatedwith an outerMarton code for
the induced deterministic broadcast channel. This scheme is shown
to achieve the cut-set bound evaluated with product form distribu-
tions. This result is then lifted to the Gaussian network by using
a deterministic network called the discrete superposition network
as a formal quantization interface. This two-stage construction cir-
cumvents the difficulty involved in working with a vector nonlinear
non-Gaussian broadcast channel that arises if we construct a sim-
ilar scheme directly for the Gaussian network.

Index Terms—Broadcast network, broadcast-relay channels,
capacity, Marton code, multiuser channels, network information
theory, wireless networks.

I. INTRODUCTION

T HE scenario of study in this paper is a communication
network with broadcast traffic, as illustrated in Fig. 1.

Broadcast here means that a single source node is reliably com-
municating independent messages to multiple destination nodes
using the help of multiple relay nodes. In the example of a cel-
lular system, the setting represents down-link communication
where the base-station is transmitting to multiple terminals with
the potential help of relay stations. Note that some of the termi-
nals can themselves act as relays.
The term wireless most commonly refers to the Gaussian

network model, where the canonical Gaussian channel model
describes the relationship between the transmitted and received
symbols of the various nodes in the network. We assume that
time is assumed to be discrete and synchronized among all
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Fig. 1. Wireless broadcast network.

the nodes. Denoting the baseband transmit symbol (a complex
number) of node at time by , the average transmit
power constraint at each node implies that

(1)

where is the time period over which the communication oc-
curs. At each time , we have the received signal at any node

(2)

Here, is i.i.d. Gaussian noise and independent across the
different nodes . The channel attenuation between a pair
of nodes is supposed to be constant over the time scale of
communication. Note that by normalizing the channel attenua-
tion , without loss of generality, we will assume unit average
power constraints at each node, i.e., and also the vari-
ance of to be 1. We suppose full duplex mode of operation
for the most part, except while discussing the implications of
half-duplex mode later in the paper. We suppose single antenna
at each node throughout the paper except in an explicitly men-
tioned section where the ramifications of the presence of multi-
antenna nodes are explored. We will begin with the supposition
that these channel attenuations are known to all the nodes in the
network, and revisit this requirement later.
In [1], a deterministic approach was introduced to study wire-

less networks. A linear-deterministic network was introduced,
where the inputs and outputs are vectors over a finite field, i.e.,

, for some prime and . The channels are
linear transformations over this finite field, i.e.,

(3)

where . In particular, are often assumed to be
“shift” matrices, which capture channel attenuation of the wire-
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less link. The linear deterministic model, on the one hand, cap-
tures wireless signal interactions like interference and broadcast
and, on the other hand, has an algebraic structure that can be ex-
ploited for understanding schemes in this network.
The linear-deterministic network, however, has shortcom-

ings; in particular, it does not capture the phase of the channel
attenuations and, therefore, does not approximate the capacity
of the Gaussian network. To overcome these shortcomings, a
deterministic network called the discrete superposition network
(DSN) was introduced in [2] and it was shown that the DSN can
act as a digital interface to construct schemes for the Gaussian
relay network. Our approach in this paper is to extend this con-
struction to the Gaussian broadcast network. We construct and
characterize the coding scheme for any deterministic broadcast
network—the DSN being a special case. We then use the DSN
as a digital interface to construct a scheme for the Gaussian
network. The DSN will be described in detail in Section IV-A.
The broadcasting setup we present here captures two impor-

tant special cases, which have been extensively studied before:
the unicast wireless relay network and the broadcast channel
(BC).
An approximately optimal scheme for the unicast wireless

relay network was given recently in [1]. The scheme consists
of each relay node doing a quantize-map-forward operation.
The existence of a good mapping was shown by considering
a random ensemble of mappings and averaging performance
across this. It was shown that this scheme was approximately
optimal in the sense that it achieves rates, within a constant
gap of the well-known cut-set outer bound, where the constant
gap does not depend on the power and the channel parameters
but only on the size of the network. The scheme was based on
insight derived from the scheme in the deterministic network
in the same paper. Lim et al. [5] give a general coding scheme,
called the noisy network coding scheme, for the discrete-time
memoryless relay network. Specialized to the Gaussian net-
work, it gives similar approximation results as [1]. In [2], yet
another alternate approach was provided, wherein the DSN
was used as a digital interface for the Gaussian network and the
scheme was constructed by lifting the scheme for the DSN.
The BC is a special case with only a source node and multiple

destinations (i.e., no relays). The capacity of the Gaussian BC
with multiple antennas (MIMO BC) was characterized in [11].
The capacity achieving scheme is based on the Marton’s coding
scheme [6], which is the best known achievable scheme for the
general BC.
The coding scheme presented here for broadcasting in

wireless relay networks is loosely based on combining the
quantize-map-and-forward scheme for the relay network
and Marton’s coding scheme for the induced nonlinear
non-Gaussian BC. Broadcasting in wireless networks has been
studied previously in a special scenario called the broadcast
relay channel in [8], which comprises of a two-user BC where
the destination nodes could also transmit, thereby also acting as
relay nodes. Decode-and-forward schemes were considered and
specialized outer bounds were given for this network, which
were shown to be better than cut-set bounds. More recently,
Vasudevan and Korada [26] have considered broadcasting over
two classes of information networks—1) a network composed

of multiple-access channels (MACs) alone and 2) a network
composed of deterministic BCs alone. For such networks,
it was shown there that cut-set bound can be achieved. The
scheme proposed there is a separation based scheme—a local
physical layered scheme over the constituent networks to create
a wired overlay network and a global routing scheme over the
overlay network.
In contrast, in this paper, we deal with general deterministic

broadcast networks and Gaussian broadcast networks, for both
of which we show approximate capacity results using a nonsep-
aration-based scheme.

A. Lesson From Reciprocity

The key intuition motivating the scheme presented here is the
lesson learnt from reciprocity. Note that the reciprocal of the
broadcast network is the network with multiple sources and a
single destination. It was shown in [5] and [17] that schemes
for the unicast network naturally extend to the multi-source
single-destination case. These schemeswere further shown to be
approximately optimal by comparing them to the cut-set bound.
Reciprocity would suggest the existence of similar schemes for
the broadcast network.
In going from the multi-source to the reciprocal broadcast

case, certain difficulties naturally arise. These difficulties were
seen even in the simple case of the multiple-access and the
BC. While the capacity schemes for the MAC generalized
simply from the point-to-point case, schemes for the BC in-
volved clever coding at the source node. The difference can
be attributed to where (at the transmitter or the receiver) the
complexity of the scheme lies. For the MAC, the complexity
lies at the decoder. It is easy to show the existence of good
coding schemes for the MAC using simple random codebooks
and analyzing performance of the complex joint decoder. For
the BC (reciprocally), the complexity is at the encoder. The
complex encoding is often elusive. In fact, for a general BC, the
optimal scheme and the capacity are still unknown. The best
known scheme is a family of schemes due to Marton [6] which
is optimal only for certain special cases. For the Gaussian
channel with multiple antennas it is known that a particular
Marton coding scheme (called Costa’s dirty paper coding) is
optimal [11], [22], [23]. For the degraded BC, superposition
coding is optimal. For the deterministic channel, a simple
Marton coding scheme achieves the cut-set bound [9].
Carrying this intuition forward to networks, the scheme for

the multiple-source network suggests the following scheme for
the broadcast network. The relays and the destination node per-
form a quantize-map-forward operation. The source takes into
account the effect of the channel and operations performed by
the relay node and needs to do a well-designed scheme for the
effective BC. The limitations on the understanding of the BC re-
strict us to design such a scheme only when the channel model
is deterministic. Even when the channel model is linear with
Gaussian noise, taking into account the relay operation leads to
an end-to-end nonlinear non-Gaussian vector BC.
The main technical contribution is the leveraging of the DSN

as a formal quantization interface for the Gaussian network to
circumvent this difficulty and to prove coding theorems for the
Gaussian network. Coding schemes for the DSN are simpler to
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derive because of the deterministic nature of the network. The
rest of this paper makes these notions precise. After discussing
the approximately optimal scheme for the broadcast network,
we will revisit the notion of reciprocity in Section II-B.

B. Communication Setup

Let denote the set of all the nodes with . Let
specify the transmit receive symbols at node

drawn from the alphabet and , respectively. A memoryless
network is specified by the following transition probability:

(4)

A broadcast network is a memoryless network specified by the
a distinguished node called the source and destinations

. The source wants to deliver independent in-
formation to each of the destinations at rates .
A coding scheme for the broadcast net-

work over time instants is comprised of the following.
1) Independent random variables which are distributed
uniformly on for , respec-
tively. denotes the message intended for destina-
tion .

2) The source mapping for time

(5)

3) The relay mappings for each and time

(6)

4) The decoding map at destination

(7)

The probability of error for destination under this coding
scheme is given by

(8)

A rate tuple , where is the rate of
communication in bits per unit time for destination ,
is said to be achievable, if for any , there exists a

scheme that achieves a probability
of error lesser than for all nodes, i.e., . The
capacity region is the set of all achievable rates.

C. Cut-Set Outer Bound

The following is the well-known cut-set outer bound to the
rate tuples of reliable communication [3], [4]:for a subset
, where denotes the set , denote to be the

collection of all subsets , such that the source node
and the subset of destination nodes .
If is achievable, then there is a joint distribution

(denoted by Q) such that

(9)

where .

Let denote the set of all rate tuples that satisfy the
cut-set outer bound for a given joint distribution , and de-
note the cut-set bound:

(10)

(11)

The capacity region is contained inside the cut-set bound, i.e.,
.

The cut-set bound under product-form distributions is given
by

(12)

where is the set of all distributions which
have a product form . Clearly , since the
latter is a larger union.

D. Main Result

Our main result is the following.

Theorem 1: For the Gaussian broadcast network, given a
tuple that lies in the cut-set region, any rate
tuple satisfying

(13)

is achievable where is a constant which
depends only on the number of nodes, and not on the channel
coefficients or the power constraints.

Corollary 1: If , a rate vector
is achievable where .

The approach to prove the above theorem is the following.
A coding theorem is first proved for the deterministic network.
The proposed scheme operates in two steps. The inner code, in
which the relays essentially perform a quantize-map-and-for-
ward operation. This induces a vector BC end-to-end between
the source node and the destination nodes. The outer code is a
Marton code (see [6] and [7]) for the BC induced by the relaying
scheme.
The coding scheme for the DSN is then lifted to the Gaussian

network, by using the DSN as a digital interface for the Gaussian
network.
The rest of the paper is organized as follows. In Section II,

we discuss linear-deterministic networks, reciprocity and some
challenges in designing schemes for Gaussian networks. This
section provides the intuition based on which schemes are de-
signed in later sections. In Section III, we give a coding scheme
and establish an achievable rate region for (general) determin-
istic broadcast networks. In Section IV, we prove Theorem 1 by
giving a coding scheme for the Gaussian network. In Section V,
various generalizations of the scheme are provided, for half-
duplex networks, for networks with multiple antenna and for
broadcast wireless networks, where some set of nodes demand
independent information and other nodes demand all the infor-
mation. In Section VI, we discuss various aspects of the pro-
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posed scheme, primarily reciprocity in the context of Gaussian
networks, and the channel state information (CSI) required.

II. LINEAR-DETERMINISTIC NETWORKS AND RECIPROCITY

In this section, we first discuss the special case of linear-deter-
ministic broadcast networks, and capacity-achieving schemes
for such networks. We then revisit the notion of reciprocity with
a particular emphasis on the contrast between transmitter-cen-
tric and receiver-centric viewpoints to the schemes. Next, we
discuss an example which highlights the challenges in designing
schemes for the broadcast relay network. This example shows
that coordination needs to be induced at the relays and how a
receiver-centric scheme can perform such coordination.

A. Linear-Deterministic Networks

A deterministic network of particular interest is the linear fi-
nite-field broadcast deterministic network [1]. The inputs and
outputs are vectors over a finite field, i.e., , for
some prime and . The channels are linear transforma-
tions over this finite field, i.e.,

(14)

where .
An important question is whether simple linear schemes are

optimal for these networks. It has already been shown in [1] that
for the single-source single-destination relay network, linear
mappings at all nodes suffice. The intuition behind the proof
is that, when the relay nodes randomly pick transformation ma-
trices, the resulting matrix between the source and the destina-
tion has rank equal to the min-cut rank of the network, with
high probability. Therefore, if the rate is lesser than the min-cut
rank, random linear coding at all nodes (including the source but
not the destination) ensures an end-to-end full-rank matrix and
the destination, knowing all these encoding matrices, picks up a
decoding matrix, which is the inverse of the end-to-end matrix.
This intuition is then used to obtain schemes in the general de-
terministic relay network and the Gaussian relay network in [1],
where the relays perform random mapping operations resulting
in an induced end-to-end channel between the source and the
destination. Then, the source uses a random code to map the
messages, and the destination performs a typical set decoding.
It has also been shown in [12] and [13] that for the linear-deter-
ministic relay network, restricting the relay mappings to permu-
tation matrices is without loss of optimality. The next corollary
claims a similar result even for the linear-deterministic broad-
cast network.

Corollary 2: For linear-deterministic broadcast network,
linear coding at every node is sufficient to achieve capacity.
Furthermore, the mapping at relay nodes can be restricted to
permutation matrices.
Although this can be proved directly, and is already shown

in [19] using an algebraic approach, we will use the connection
between linear coding and reciprocity to prove this in the next
section as this will form the intuitive basis for our schemes in
more general settings.

B. Reciprocity

In Section I-A, we pointed out that our scheme was inspired
from the consideration of reciprocity in networks. We revisit the
notion here again, nowwith the hindsight of the scheme to better
understand our intuitions.
Generally speaking, by the reciprocal of a network, we mean

a network where the direction of links are reversed and the roles
of the source and destination are swapped. For a Gaussian net-
work, with power constraints at the transmitting nodes and ad-
ditive noise at the receiver nodes, it is not clear what is the most
appropriate way of defining the corresponding reciprocal net-
work. However, we will use the canonical definition of the re-
ciprocal of a Gaussian network having unit power constraint at
all nodes and unit noise variance with multiple unicast traffic as
the network where the roles of the sources and the destinations
are swapped, and all nodes retain their unit power constraint
and unit noise variance at the receivers. Note that any channel
coefficient that captures the signal attenuation between a pair
of nodes is the same in either direction. For a linear-determin-
istic network, the reciprocal network was defined in [14] as the
network where the roles of the sources and the destinations are
swapped, and the channel matrices are chosen as transposes of
each other in the forward channel for the network and its recip-
rocal.
While it is unresolved whether a given network and its re-

ciprocal have the same capacity region [27], many interesting
examples are known for which this is true. For some cases, this
reciprocity is applicable even at the scheme level.
1) Wireline networks can be considered as a special case of
wireless networks studied here. It has been shown in [21]
that wireline networks are reciprocal (also called reversible
in the literature) under linear coding.

2) In [14], it was shown that reciprocity, under linear coding,
can be extended naturally to the linear-deterministic net-
work. The reciprocity was shown at the scheme level and
the coding matrices at each node can be obtained from the
coding matrices in the reciprocal network.

3) In Gaussian networks, duality has been shown (see [22]
and [23]) between the MAC and BC, where it was shown
that the capacity region of the MAC is equal to the capacity
region of the BC under the same sum power constraint.
This duality was also shown, interestingly, at the scheme
level between the dirty-paper precoding for the BC and the
successive cancellation for the MAC.

The reciprocal network corresponding to the broadcast net-
work studied here is the network with many sources and one
destination. This network has been studied in [5], [17], and [24].
1) Sufficiency of Linear Coding for Linear-Deterministic

Networks: In [24], the capacity region for the linear-deter-
ministic network with many sources and one destination is
established and it is further shown that linear coding is sufficient
to achieve this. This is done by converting the problem to the
case of single-source single-destination by adding a super-node
and connecting all the source nodes to the super-node by
orthogonal links with capacities equal to the rate required
for that source. Since random linear coding at the source
and the relays works for the single-source single-destination
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network, it works for this network too. Therefore, the source
nodes and the relay nodes perform random mappings, and the
destination, knowing the source and relay mappings, can then
carefully pick the decoding matrix that inverts this overall
matrix. Since this coding is linear, we can use the reciprocity
result of [14], to show that any rate achievable in the dual
multiple-source single-destination network is also achievable
in the single-source multiple-destination case. Along with the
fact that the cuts are reciprocal in these two networks, this
implies that linear coding is optimal even in the case of the
linear-deterministic broadcast network.
Furthermore, from the results of [12] and [13], it can also be

shown that the sources and the relays can pick up specific per-
mutation matrices for the single-source single-destination net-
work. The above argument can then the extended to show that a
coding scheme involving only permutation mappings at the re-
lays is sufficient for the linear-deterministic broadcast network.
2) Receiver-Centric Versus Transmitter-Centric Schemes:

We now continue on our discussion on duality for linear-de-
terministic network to illustrate how these ideas lead us to
a scheme for the Gaussian broadcast network. We begin by
defining two viewpoints in which schemes can be constructed.
A transmitter-centric scheme is one in which the scheme is
constructed from the viewpoint of the transmitter, where the
codebook at the transmitter is first selected using a random
coding argument and then the receiver chooses its decoders
in accordance with the realization of the transmit codebook.
In contrast, in a receiver-centric scheme, we fix the decoder,
which comprises of the mappings from the received vectors
to the messages, and based on these mappings, the transmitter
chooses its codebook to ensure low probability of error.
Because random coding is done at the source, we can think

of this scheme as first constructing the transmitter codebook in
a random manner and the receiver then constructs its decoder as
a function of the realization of the transmit codebook. While
the scheme for the linear-deterministic multi-source network
is transmitter-centric, the scheme for the linear-deterministic
broadcast network is receiver-centric. We will now study the
schemes in several well-known examples and categorize them
as transmitter-centric or receiver-centric.

a) Point-to-point channel: For a point-to-point channel,
the usual random coding scheme [3] can be regarded as either
a transmitter-centric scheme, which is the traditional viewpoint
(since the random codebook is thought of as being constructed
at the source), or as a receiver-centric scheme. It can be viewed
as a receiver-centric scheme, because, at the receiver we con-
struct a vector quantization codebook (alternately viewed as the
decoder) of rate , which “quantizes” the received signal to
a vector , for some where is the message index and

is the th quantization codeword. Now the source sets
its codebook to be equal to the vector quantization codebook at
the destination. This is the same scheme as the usual random
coding scheme. The distinction between transmitter-centric and
receiver-centric schemes in this example is, therefore, one of
personal preference, rather than an enforced one.

b) MAC versus BC: In some networks, we may not
have the luxury to use the two viewpoints simultaneously, in
which case we need to choose between the two. In the ca-

pacity-achieving coding scheme for the MAC [3], the random
coding is done at the transmitters and the receiver does joint
typical-set decoding, based on the specific codebooks con-
structed at the sources. This provides a good example of a
transmitter-centric scheme.
In contrast, for the two-user BC, we can now view theMarton

coding scheme (see [6] and [7]), used in Section III-B3, as a re-
ceiver-centric scheme. In this scheme, there are two auxiliary
random variables, and , which we view as corresponding
to the vector quantization variables at the two users. The re-
ceiver can be thought of as constructing a vector quantization
codebookwhich “quantizes” the received vector to ,
where is an index belonging to a set larger than the set of all
messages to user , and bins the set of all to the message
for user . The transmitter, to transmit a message pair ,
finds a pair such that is jointly typ-
ical. From this viewpoint, the receivers are choosing random de-
coders, and the transmitters are choosing specific codebooks to
be a function of the realization of the decoders. Thus, the coding
scheme can be viewed as a receiver-centric one.

c) Multiple access versus broadcast in linear-deterministic
networks: From [5] and [17], we know that a transmitter-centric
scheme, where the sources and the intermediate nodes perform
random coding, is optimal for the many-source single-destina-
tion problem in the linear determinstic setup. Intuition suggests
that a natural receiver-centric method should work for the recip-
rocal network (i.e., single-sourcemultiple-destination network).
In particular, the relays perform random mappings, and the des-
tinations perform “random decoding,” i.e., they fix a random
linear mapping from the received vector into a smaller message
vector. Once these mappings at the relay and the destinations
are fixed, the source evaluates the induced linear BC between
the source and the various destinations; and constructs a linear
broadcast code for this channel. This scheme can then be shown
to be optimal for the broadcast network, because this is the recip-
rocal of the linear random coding scheme, which is optimal for
the multi-source single-destination network, as shown in Fig. 2.

d) Scheme for Gaussian broadcast networks as a receiver-
centric scheme: The general idea for the scheme for the linear-
deterministic broadcast network is the foundation of our scheme
for the Gaussian broadcast network in Section IV. In order to
build the scheme for the Gaussian network, we first construct a
scheme for general deterministic networks (of which the DSN
is a special case) and then lift the scheme from the DSN to the
Gaussian network. In case of the linear-deterministic broadcast
network, the source-mapping depended on the specific relay
transformations used, not just on the probability distribution
used to create the relay transformation. Extending this idea, we
would like to construct a scheme for the general deterministic
network, where the source codebook is a function of the spe-
cific relay transformation. Indeed, we resolve this problem by
constructing a Marton scheme at the source for the vector BC
induced by the specific relay mappings.
Next, the scheme for lifting codes from the DSN to Gaussian

relay networks proposed in [2] requires each node, including the
destination, to prune their received vectors to a restricted set to
ensure that the received vector in the DSN can be decoded from
the received vector in the Gaussian network. Since this scheme
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Fig. 2. Reciprocity in linear-deterministic networks. (a) Random coding
scheme for multi-source single-destination network. (b) Dual random coding
scheme for single-source multidestination network.

Fig. 3. MISO BC as a special case of broadcast network.

restricts the received codewords at the destination, this scheme
also naturally fits into a receiver-centric viewpoint. This enables
us to design schemes for Gaussian networks efficiently.

C. Induced Coordination at Relays

We now turn to a simple example to illustrate the difficulty
in constructing schemes for Gaussian broadcast networks. Let
us consider an example Gaussian broadcast network comprised
of a single source, two relays, and two destinations, shown in
Fig. 3. The link between the source to the two relays is infinite,
which implies therefore that the network is essentially an MISO
BC with two transmit antennas and two receivers, each with a
single antenna. It is clear [11] that for anMISOBC, independent
coding across the two relays is insufficient to even obtain the
best possible degrees of freedom. Therefore, any scheme that is
approximately optimal needs to perform coordinated transmis-
sion at the relays.
In the proposed scheme, the relays perform quantization fol-

lowed by independent encoding of the quantized bits into trans-
mitted vectors. At a first glance, a scheme in which the relays are
performing independent mappings seems incapable of attaining

good performance because of the inability to induce coordina-
tion. However, two key features in the proposed scheme help
avoid this pitfall.
1) The relays and perform quantize-and-encode re-
laying in our general scheme, in spite of the fact that they
can decode the source message completely. Had the relays
decoded the source message and performed independent
encoding, there is no possibility of achieving even the de-
grees of freedom of this simple broadcast network.

2) The source takes into account the specific realizations of
the relay mappings and constructs the coding scheme. This
ensures that from the point of view of the receiver, the sig-
nals transmitted by the two relays appear coordinated. In
particular, in this example, since the channel from to
is infinitely good, the relay quantizes the received signal
to a very fine degree and encodes this for transmission to
the destination. This gives the source many degrees-of-
freedom to encode information in the various least signif-
icant bits of its transmission, so that after the relay map-
pings, the relay transmissions appear coordinated.

III. DETERMINISTIC BROADCAST NETWORKS

We consider a (general) deterministic or “noise free” network
model, where the received signal at each node is a deterministic
function of the received signals

(15)

The input and output alphabet sets, ’s and ’s, respectively,
are assumed to be finite sets.
While the cut-set outer bound of Section I-C is directly appli-

cable here, we prove the following achievability result for the
deterministic channel.

Theorem 2: For the deterministic broadcast network, the re-
gion is achievable, i.e., a rate vector is achiev-
able if there is a product distribution (denoted by )

such that

(16)

Remark 1: For many special classes of deterministic net-
works such as the linear-deterministic network and the network
composed of deterministic BCs [26], it can be shown that
the cut-set bound is also maximized by the product distri-
bution, thereby characterizing the capacity of such networks
completely.

Proof: We prove Theorem 2 for the layered network here.
A nonlayered network can be handled by considering a corre-
sponding unfolded network as done in [1]. A network is called
an L-layered network if the set of vertices can be partitioned
into disjoint sets, such that only the source node is in the
first layer and the destination nodes are in the th layer. The
nodes in the intermediate layers are relaying nodes. The re-
ceived signal at the nodes in the th layer only depend on
the transmitted signals at the nodes in the th layer. This de-
pendence is often represented by edges connecting the nodes
from the th layer to the th layer. An example of a lay-
ered broadcast network is shown in Fig. 4. The advantage of
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Fig. 4. Layered broadcast-relay network.

working with a layered network is that we can view the infor-
mation as propagating from one layer to the next without getting
intertwined.

A. Outline of Coding Scheme

The basic idea of the coding scheme is as follows:
1) Let be a rate tuple in (the cut-set region
of the broadcast network evaluated under product distri-
butions). We will construct a scheme to achieve this rate
tuple.

2) The broadcast network is converted into a unicast network
by adding a super-destination which has links from each
of the destinations by a wired link of capacity . For
this unicast network, the cut-set bound evaluated under
product distributions is equal to .

3) For the relay network, a zero-error coding scheme is em-
ployed that operates over time instants, which achieves
the rate .

4) The relaying scheme creates an end-to-end deterministic
vector BC between the source and the destinations over
vectors of symbols.

5) AMarton code is used over a block of vectors to achieve
the cut-set of the induced deterministic BC, which includes
the point .

B. Coding Scheme in Detail

The random ensemble of coding operations is described for
a fixed product distribution . Further, the random coding is
described to achieve an arbitrary rate tuple .
The coding is done over a period of time instants.
1) Creating a Relay Network: We add a super-sink to the

deterministic broadcast network to obtain a deterministic uni-
cast network. The unicast network is obtained by adding wired
links of capacity from destination to super-sink .

Lemma 1: If for a given , , then
the cut-set of the unicast network with wired links

evaluated under is equal to .
Proof: See Appendix A.

For a deterministic unicast network, Theorem 4.1 in [1]
shows that the cut-set under product form distributions is
achievable using an -error scheme. (This is proved by a
random coding argument, that shows the existence of a code-
book of size codewords, each codeword of length
symbols.) Since the channel is deterministic, only an -fraction
of the codewords are decoded with error while the rest are
decoded correctly. Discarding these -fraction of codewords,

Fig. 5. Effective end-to-end deterministic BC created by an inner code.

leads to negligible rate loss as can be chosen arbitrarily
large. Therefore, this implies that for the deterministic channel,
there is a zero error scheme which can achieve arbitrarily close
to the cut-set bound under product form distributions. Thus, the
rate is achievable using such a scheme. Suppose this relaying

scheme operates over a block length of . Let

and denote the transmit and receive block at any
node . Thus, we have a source codebook for the unicast
network given by , which is a collection of vectors of
length each. And the relay mappings

(17)

for the relay node .
2) Relay Mappings: The scheme for the broadcast network

operates over time intervals and this entire time dura-
tion is divided into blocks, each composed of time in-
tervals. Each set of time instants is treated as a block and the
vector denotes over the time instants corresponding
to the th block:

. Furthermore, denotes .
The relaying operation for the broadcast network is per-

formed in blocks using the relaying scheme for the unicast
network as follows. Each relay transmits a block using only
the information from the previous received block. Thus

(18)

3) Source Mappings: With the fixed relaying operations for
the relaying nodes, as defined above, an end-to-end determin-
istic channel results between the source and the destination
nodes. Note that the input alphabet set at the source node
is given by the source codebook of the unicast network .
The deterministic BC is time invariant since the same relay
mappings are used for all and is characterized by the
functions

(19)

The capacity of the deterministic BC is well known (see [6]
and [9]). In particular, the coding scheme described for the de-
terministic BC in [7], commonly referred to as the “Marton
code,” can be used and is described below succinctly.
A brief description of the Marton code is given here for

completeness, we refer the reader to [7] for further details. The
random code ensemble is constructed as follows. Consider a
uniform distribution over , which is a collection of . The
channel and the relay mapping induce the joint distribution
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over the random variables . Create auxiliary random

variables such that is the same as
.

The set of all typical are binned
into bins, where each bin index corresponds
to a message, for . For each vector

, there exists a se-
quence , since the channel is deterministic,
such that .
4) Encoding: To transmit the message ,

the source tries to find a vector

such that is also in the bin with
index . If the source can find such a vector, it transmits

. If the source cannot find such a sequence,
it transmits a random sequence.
5) Decoding: The destination finds the bin in which the

received vector falls and decodes that bin index as the trans-
mitted message.

C. Performance Analysis

First, the rate constraints for the Marton code are identified
under which arbitrarily low probability of error is guaranteed
provided a large enough is chosen. It is shown in [7] that this
is guaranteed, provided the rate tuple satisfies

(20)

where .
Next, is evaluated with the relaying opera-

tions that was chosen using the following lemma.

Lemma 2: Given arbitrary s.t.,

(21)

Proof: See Appendix B for the proof.

Using (11) and Lemma 2, it can be concluded that the rate
tuple is achievable.
Since was chosen to be any point in , the

region is achievable. This proves the theorem.

IV. GAUSSIAN BROADCAST NETWORKS
(PROOF OF THEOREM 1)

In this section, we prove the main claim of the paper, that for
Gaussian broadcast networks, the cut-set bound is achievable to
within a constant number of bits.
As for the deterministic network, only a layered network is

considered here. A nonlayered network is handled in the same
way as done in [1]. For the Gaussian network, while it is possible
to do the inner code as done in the deterministic network and
induce an end-to-end BC; the induced BC would be a vector
nonlinear non-Gaussian BC due to the complicated nature of
the relay mappings. For general BCs, it is unknown whether
a Marton scheme achieves rates within a constant gap of the
cut-set bound.

Therefore, a different approach along the lines of [2], with
the DSN approximation for the Gaussian network as a digital
interface is used. The DSN is a deterministic network. The ger-
mane code for this deterministic network is constructed and then
appropriately “lifted” to construct the code for the Gaussian net-
work.

A. Discrete Superposition Network (DSN)

In [2], the recipe to construct a DSN corresponding to a
Gaussian network is given. We start with the given Gaussian
network defined by the channel model

(22)

where each node has unit power constraint and the noise has
unit variance. We construct a corresponding DSN by defining
the equivalent channel model in the DSN as follows:

(23)

where lies in and corresponds to quantizing the
real and imaginary parts of the complex number by neglecting
the fractional part. Further, the transmit alphabet in the DSN is
restricted to a finite set, such that both the real and imaginary
parts belong to the finite set with equally spaced points given
by

(24)

where We will use , for the
output and input alphabets in the DSN. Observe that we have
used the caret sign to distinguish corresponding quantities for
the DSN from the Gaussian network. This DSN model is also
similar to the truncated deterministic model in [1], where the
channel inputs and channel gains are complex.

B. Unicast Network: Connection Between Gaussian and DSN

First, the connection between Gaussian and DSN unicast net-
works, which was established in [2] is revisited.
The following lemma establishes a crucial relationship be-

tween the two networks by relating the cut-set bounds in the
two networks

Lemma 3 (see [2, Th. 3.2]): There exists a constant
, such that if is the min-cut of a Gaussian

unicast network, then is the min-cut for the corre-
sponding DSN unicast network evaluated under product form
distributions.
In [2], a coding scheme for the Gaussian network was pre-

sented, which used the corresponding DSN as a digital inter-
face. A coding scheme for the DSN was first constructed and
the coding scheme for the Gaussian network was constructed
by defining an emulation function that operated on top of the
DSN scheme. This strategy is revisited next.
1) Emulation Scheme for Relay Network: Consider a unicast

Gaussian network and it’s corresponding DSN unicast network.
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The transmitted and received symbols at node in the DSN is
denoted by and and the transmitted and received symbols
at node in the Gaussian network is denoted by and ,
respectively. Let be the output and input alphabets at
node of the DSN and the output and input alphabets
for the Gaussian network.
The coding scheme for the DSN n\\is comprised of the fol-

lowing:
1) A source codebook , i.e., .
2) The relay mappings ,i.e.,
and

3) The destination decoder , i.e.,
.

For the Gaussian network, the DSN coding scheme can be
emulated on the Gaussian network using “emulation mappings”
that convert the received vector in the Gaussian network to

the received vector in the DSN given by

(25)

The emulation mapping along with the coding scheme of the
DSN comprises the coding scheme for the Gaussian network.
The probability of error for emulation is defined as the prob-

ability that the emulated vector is different from the vector in
the DSN and is given by

(26)

In [2], it has been shown that there exits an emulation map-
ping such that the probability of error for emulation can be made
arbitrarily small for rate within a constant of the cut-set bound.
This is stated more precisely in the following lemma.

Lemma 4 [2]: Given a zero-error coding scheme for the DSN
unicast network of rate , a pruned coding scheme of rate
(with ) can be created for the DSN
unicast network and an emulation scheme can be created for
the Gaussian network with probability of emulation error lesser
than , for any arbitrary .

Proof: For proof, refer [2, Th. 3.4].

C. Coding Scheme for the Gaussian Broadcast Network

Let us consider a specific rate vector in the inte-
rior of , the cut-set region for the Gaussian network. A coding
scheme with rate vector a constant away from the rate vector

is constructed as follows.
1) Consider the corresponding DSN network to the Gaussian
network. Next, construct the unicast network by adding
a super-destination to both the Gaussian and the DSN
network. This unicast network is further augmented by
adding incoming edges from each of the destinations
by a rate-limited wired link of capacity .
The cut-set bound of the Gaussian unicast network is equal
to . The cut-set bound of the DSN unicast
network (under product form distributions) is given by

where by Lemma 3. The-
orem 2 then implies that there exists a zero-error coding
scheme for the DSN unicast network at rate .

2) Construct a -pruned coding scheme for this
DSN unicast network at rate , with

and , as given by
Lemma 4. This scheme can be emulated on the Gaussian
unicast network with an arbitrarily small error probability.

3) The relay mappings from the DSN unicast network can
then be used to create a coding scheme for the DSN
broadcast network as described in Section III-B3. This is
done using the relay mapping to construct a deterministic
end-to-end BC and then using the Marton code.
Recall that the coding scheme is over time instants,
where each set of time instants is treated as a block
and the vector denotes over the time instants
corresponding to the th block and is denoted by .
The relay mappings are given by and operates over the
blocks of time instants.

4) For the Gaussian broadcast network, the emulation map-
ping is then used to emulate the received vectors on the
DSN and hence convert the scheme for the DSN broadcast
network to a scheme for the Gaussian broadcast network.

D. Performance Analysis

First, the rates that can be achieved for the DSN broadcast
network is characterized. As seen in Section III-C, this is given
by

(27)

Note that is obtained by assuming a uniform distribution
over the pruned codebook for the DSN unicast network. The fol-
lowing lemma analogous to Lemma 2 characterizes .

Lemma 5: Given arbitrary s.t.,

(28)

Proof: The proof of this lemma is the same as the proof of
Lemma 2 with replacing as the rate of the DSN unicast
scheme.

Therefore, the rates can be achieved for the DSN
broadcast network.
Lemma 4 ensures an emulation mapping with arbitrarily

small emulation error probability, and thus, the rate vector
can be achieved for the Gaussian broad-

cast network. This completes the proof of Theorem 1.

V. GENERALIZATIONS

In this section, we present various generalizations of our
result, for half-duplex networks in Section V-A, for networks
with multiple antenna in Section V-B and for broadcast wireless
networks, where some set of nodes demand the same infor-
mation and other nodes demand independent information in
Section V-C.

A. Half-Duplex Networks

Our discussion so far has been restricted to the context of full
duplex scenario. A network is said to be half-duplex if the nodes
in the network can either transmit or receive information, but
not do both simultaneously. Therefore, the network needs to be



KANNAN et al.: APPROXIMATELY OPTIMAL WIRELESS BROADCASTING 7163

scheduled by specifying which nodes are listening and which
nodes are transmitting at any given time instant. Let the set of
all possible half-duplex schedules at any time instant be . An
edge is said to be active at time slot if is transmitting and
is receiving at that time slot.
Consider time slots and at any time instant , let

be the half-duplex schedule used, and be the sequence
. We consider only static schedules here, that

is, schedules that are specified a priori and do not vary de-
pending on dynamic parameters like channel noise. For any
static schedule , we can unfold the network graph with
respect to that schedule. This unfolding procedure is the same
as performed in [1] by: is connected to with a
link only when is active at time slot .
Given that the network is operated under a schedule , we

define the set of all rate pairs achievable as the capacity region
under the schedule . An outer bound on the capacity region
under the schedule is given by the cut-set bound in the un-
folded layered network corresponding to the schedule. This rate
can be achieved within a constant gap by using Theorem 1.
Thus, for any schedule , any rate tuple within the constant

of the cut-set bound can be achieved (to
within a constant number of bits) using that schedule and then
using the scheme of Theorem 1 for the unfolded layered net-
work. Now, we can optimize over all schedules al-
lowed under the half-duplex constraints. Thus, the capacity re-
gion of the network under static half-duplex scheduling is the
union over all possible schedules of the capacity region under
schedule .

B. Multiple Antenna Networks

In this section, we consider the implication of havingmultiple
antenna elements at each of the nodes in the network. Suppose
possesses antenna elements, which are used for both trans-
mission and reception. The basic result for multiantenna broad-
cast networks is the following.

Theorem 3: For the Gaussian multiantenna broadcast net-
work, given a tuple that lies in the cut-set re-
gion, any rate tuple satisfying

(29)

is achievable where with
being a constant which depends only on the number of nodes
and the number of antennas in each node, and not on the channel
coefficients or the power constraints.

Proof: The proof is essentially the same as the one for the
single antenna case in Section IV. We can essentially think of
each antenna as a distinct node with infinite capacity edges be-
tween the various antennas of a given node and then the proof
for the single antenna case just goes through.

C. Broadcast-Cum-Multicast

The broadcast network comprised of a single source and
destinations demanding independent messages
at rates . Suppose that in addition there are also
other multicast destinations that demand all

themessages transmitted by the source.We call such a network a
broadcast-cum-multicast network. In this section, we will show
that even for such networks, the cut-set bound is achievable
to within a constant number of bits. This network is a gener-
alization of both the multicast network considered in [1] and
the broadcast network considered in the previous sections. The
broadcast-cum-multicast traffic model is also considered in [18]
and [19] in the context of wireline and linear-deterministic net-
works, respectively, where it is also noted that the source should
carefully choose the coding coefficients such that the destina-
tions can decode, resonating with the “receiver-centric” view-
point suggested here.
First, we note that the cut-set bound for the broadcast-cum-

multicast network is given by the cut-set bound for the broadcast
network, along with the cut-set constraints for each multicast
receiver. In particular for the Gaussian broadcast-cum-multicast
network, if is achievable, then there exists a joint
distribution such that

(30)

and in addition, the sum rate is constrained by each of the mul-
ticast destinations (since all these destinations demand all the
messages transmitted by the source)

(31)

The set of all rate tuples inside the cut-set bound is then denoted
by .
The main result for the wireless broadcast-cum-multicast net-

work is that any rate a constant away from cut-set bound is
achievable.

Theorem 4: For the Gaussian broadcast-cum-multicast net-
work, given a tuple that lies in the cut-set re-
gion, any rate tuple satisfying

(32)

is achievable where is a constant which
depends only on the number of nodes, and not on the channel
coefficients or the power constraints
To prove this result, we follow an approach similar to the one

we took for broadcast networks. First, we will prove a result for
deterministic broadcast-cum-multicast networks. Second, we
show that the Gaussian network can emulate the deterministic
superposition network with a constant rate loss. These two
steps are completed in the rest of this section.
1) Deterministic Broadcast-Cum-Multicast Network:

The next lemma shows that for the deterministic broad-
cast-cum-multicast network, the cut-set bound evaluated under
product form distributions is achievable.

Lemma 6: For the deterministic broadcast-cum-multicast
network, the cut-set bound under product-form distributions is
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achievable, i.e., a rate vector is achievable if for
every there is some product probability distribution
, such that

(33)

(34)

(35)

(36)

Proof: The coding scheme proceeds exactly in the same
way as in the proof of Theorem 2, elaborated in Section III-B.
Here, we sketch the proof by highlighting the differences for the
broadcast-cum-multicast network.
1) The broadcast-cum-multicast network is converted into a
multicast network by adding a super-destination which
has links from each of the destinations by a rate-lim-
ited link of capacity . There are multicast destinations

. If is in the cut-set region
of the broadcast-cum-multicast network (evaluated under
product distributions), then the min-cut of the multicast
network (evaluated under product distributions) is equal to

.
2) For the multicast network, a zero-error coding scheme
is employed that operates over time instants, which
achieves the rate .

3) The multicasting scheme creates an end-to-end determin-
istic broadcast-cum-multicast channel between the source
and the destinations , over vec-

tors of symbols.
4) Consider the induced deterministic broadcast-cum-mul-
ticast channel. We use a Marton code for destinations

of block length using the auxiliary random
variables . The auxiliary random variable

is binned into bins corresponding to the
different values of the message . The source takes
the messages and finds a jointly typical

. This implies that there exists a such
that is jointly typical. This is trans-
mitted. The broadcast destination finds the bin in
which falls and declares that as the message. The
multicast destinations find the which is jointly typical
with the received and declares the corresponding

as the message. This coding scheme
achieves low probability of error as long as

(37)

(38)

5) Since the multicasting scheme achieves rate , by per-
forming a calculation similar to Lemma 2, we can assert
that

(39)

(40)

This implies that is feasible,
for any in the cut-set region of the broad-
cast-cum-multicast network (evaluated under product dis-
tributions).

Corollary 3: For the linear-deterministic broadcast-cum-
multicast network, the cut-set bound is achieved. For the de-
terministic broadcast-cum-multicast channel (a deterministic
broadcast-cum-multicast network in the absence of relays and
destination cooperation), the cut-set bound is achieved.

Proof: In the latter case, the cut-set bound under product
form distribution is the same as the cut-set bound under general
distributions since there is only one transmitting node in the
network. The former case can be proved by showing that the
cut-set bound for linear-deterministic networks is optimized by
product form distributions.

2) Gaussian Broadcast-Cum-Multicast Network: The proof
for the Gaussian broadcast-cum-multicast network is the same
as the proof for the Gaussian broadcast network, except that
instead of starting with an emulation scheme for the Gaussian
relay network, we start with an emulation scheme for the
Gaussian multicast network by a DSN multicast network,
which is available in [2, Th. 5.3]. Then, the coding scheme of
Lemma 6 for the DSN broadcast-cum-multicast network can be
emulated on the Gaussian broadcast-cum-multicast network.
The proof then follows a similar path as the proof of Theorem
1, as elaborated in Section IV-C and is omitted here to avoid
repetition.

VI. DISCUSSION

In this section, we will show an approximate reciprocity be-
tween Gaussian broadcast networks and Gaussian multi-source
networks. Then, we mention the CSI requirements for the pre-
sented scheme for Gaussian broadcast networks and contrast it
with the CSI requirements for the Gaussian multi-source net-
works. We finish the discussion section with some comments
on the capacity gap.

A. Approximate Reciprocity in Gaussian Multi-Source and
Broadcast Networks

In this section, we will demonstrate that there is an ap-
proximate reciprocity in the capacity regions of a Gaussian
multi-source network and the corresponding reciprocal
Gaussian broadcast network.
In our model, we have assumed, without loss of generality,

the average transmit power constraint of unity at each node. We
have also assumed that the reciprocal network, in addition to
having the same channel coefficients, also has unit power con-
straints at each node. However, it is not clear if this is the “right”
way of defining the corresponding reciprocal network. For in-
stance, in [22] and [23], MAC-BC duality was shown under
the assumption of same total transmit power in both networks;
however, this power could be divided amongst the nodes in a
different manner in the forward and reciprocal networks. Under
this assumption, it was shown that the capacity region of the two
networks was identical. However, since we are concerned only
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about approximate reciprocity in this section, which is a weaker
form of reciprocity, our definition of unit power constraint ev-
erywhere will be sufficient.
In [5] and [17], a coding scheme is given for the Gaussian

network with many sources and is shown to achieve the cut-set
bound region within a constant gap, which depends only on
the network gain. In Section IV, we have showed that for the
Gaussian broadcast network also, we can achieve the cut-set
bound region within a constant gap. As a result, to show that
the capacity region of the two networks are themselves within a
constant gap, which depends only on the network topology and
not on the channel gains, all we need to do is to observe that
cut-sets of the reciprocal networks are within a constant gap of
each other. Note that the cut-set bound corresponds to MIMO
point-to-point channel where all the nodes on the source side
of the nodes can be thought of as transmit antennas and all the
nodes on the destination side can be thought of as receive an-
tennas. The relationship then between a cut in a network and
the corresponding cut in the reciprocal network is the same as
the relationship between a MIMO channel with channel matrix
and the reciprocal MIMO channel with the channel matrix
. The reciprocity of MIMO channel has been shown in [25],

under equal total transmit power, i.e., the capacity of the two
networks is the same. It can be shown (see proof of Lemma
6.6 in [1], for instance) that restricting to per node power con-
straint only leads to a loss which does not depend on the channel
gains. Therefore, we can show that the cut-set bounds are ap-
proximately reciprocal, which implies that the capacity regions
are approximately reciprocal as well.

B. Channel State Information (CSI)

We now examine the CSI required at the various nodes for
the schemes proposed in Sections III and IV for deterministic
and Gaussian broadcast networks.
1) Deterministic Broadcast Networks: While we have used

an arbitrary coding scheme for the DSN relay network in con-
structing the coding scheme for the Gaussian network, we could
as a special instance choose to work with the random coding
scheme. Once we use a random coding scheme for the DSN
relay network, the relays do only random coding and do not,
therefore, need to know the channel state.
Thus, for deterministic networks, the following CSI is re-

quired.
1) All non-source non-destination nodes are unaware of any
CSI.

2) We assume that each destination knows the distribution
of the received vector and bins the set of all typical
vectors into bins corresponding to the messages, and
uses this as the decoding rule.

3) The transmitter is assumed to have full CSI, and knows the
relay mappings at all nodes and also the binning scheme at
the destinations. The transmitter constructs the codebook
using the same binning scheme as the receiver.

Thus, this scheme has the interesting property that if the
transmitter had all knowledge, the intermediate nodes have zero
knowledge and the destination has a little knowledge (about
the distribution of the received vector), then the same rate can
be achieved as the complete CSI case.

This is dual to the situation of the multi-source single-desti-
nation network, where the receiver having full knowledge, in-
termediate nodes having zero knowledge and the transmitters
having a little knowledge (about the distribution of the trans-
mitted vector) can achieve the same rate as full channel knowl-
edge.
2) Gaussian Broadcast Network: For Gaussian networks, the

following CSI is required:
1) All non-source non-destination nodes need to know
enough CSI to emulate the corresponding nodes in the
DSN. This implies that each node needs to use the
received vector distribution to pick a pruned subset of
the typically received vectors in the corresponding DSN
in the emulation scheme. This information is contained
in the CSI of the local neighborhood of a node (channel
coefficients of all edges connected to a given node).

2) We assume that each destination knows the distribution of
the received vector in the corresponding DSN , and the
transmitted rate . The destination maps bins the set of
all typical vectors into bins corresponding to the
messages, and uses this as the decoding rule.

3) The transmitter is assumed to have full CSI, and knows
the mappings used at all the nodes and also the binning
scheme at the destinations. The transmitter then uses the
same binning scheme used at the receiver.

This scheme has the interesting property that if the transmitter
had all knowledge, the intermediate nodes and the destination
have local knowledge, then the same rate can be achieved as the
complete CSI case.

C. Capacity Gap

The gap between the sum rate of the proposed achievable
scheme and the outer bound for the Gaussian broadcast net-
work is given by . This gap is independent of the
power constraints and the channel coefficients. This is the same
as the gap obtained for relay networks in [2], since we are using
the same emulation scheme to connect the Gaussian and DSN
networks in our scheme. The results in [1] and [5] give better
approximation guarantees for Gaussian relay networks with the
constant gap being linear in the number of nodes: . These
results are obtained directly without the use of deterministic su-
perposition network. It may be possible to obtain gaps
for the broadcast scenario either by completely bypassing the
deterministic models and working directly with the Gaussian
network or by using the truncated deterministic model of [1]
which is a better approximation of Gaussian network than the
DSNmodel of [2]. This is one possible direction for future work.

APPENDIX A
PROOF OF LEMMA 1

Consider any cut such that and . There
are two components that contribute to the value of the cut: one
part comes from the wired links and the other part that
comes from the original network. Let be such that
and , this implies that the wired links of capacity

are included in the cuts. Recall denotes
the value of the cut-set bound evaluated under the distribution
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for separating the source from the set . As the cut sep-
arates from the value of cut gained from the original net-
work is bigger than . Furthermore, since

, . This implies that the value of
cut gained from the original network is bigger than this value:

. Thus, the total value of the cut is
. The min-cut value is actually equal to since the

cut that separates from has value .

APPENDIX B
PROOF OF LEMMA 2

Let the min-cut between the source to the destination be .
Since the relaying scheme can achieve any rate close to the
cut-set bound for large enough , the information transmitted
by all the sinks to the super-sink D should be greater than rate
, therefore for any subset

(41)

(42)

(43)

(44)

(45)

(46)

(47)

where the last inequality follows due to the rate constraint on
the links. Thus, we get

(48)

Furthermore, the min-cut (under product distributions) is
by Lemma 1, and this gives

(49)
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