
Information theory and Deep learning: 
An Emerging Interface

Presenting Team

Hyeji Kim Sewoong OhSreeram Kannan

University of Illinois, Urbana ChampaignUniversity of Washington, Seattle

Special Thanks:

Pramod Viswanath (UIUC)

Success of Deep Learning

https://www.youtube.com/
watch?v=9Yq67CjDqvw

Speech Image recognition

NLP
Video

https://www.youtube.com/watch?v=9Yq67CjDqvw

Why does Deep Learning work?
Model deficit

✤ Hard to model image, speech, language, video..

alphaGo => No model deficit
Algorithm deficit

✤ Hard to find optimal algorithms for known model..

Example: Nanopore sequencing

Nearly a markov model

✤ Yet deep learning does “better”. Why?

Information theory and Deep learning

Information
theory Deep learning

Information measures => Training objectives

Information lens => How
much information is needed?

Data has structure like hierarchy and invariance

Algorithm deficit

Organization: This Tutorial

1a. Deep learning
for communication

1b. Deep learning for
statistical inference

2a. Theory for GAN 2b. Learning Gated
Neural Networks

Part-1: Deep learning for information theory

Part-2: Information theory for deep learning

Sewoong Oh

University of Illinois at Urbana-Champaign

Background on
Neural Network Training

• Problem statement

• As we access the joint distribution through samples, we
minimize the sample mean instead,

• To avoid overfitting to the training samples, we search over a
restricted class of functions

• Neural networks: a parametric family with a graceful tradeoff
between representation and generalization

Classification

min
f2F

1

n

nX

i=1

L(f(Xi), Yi)

min
f

EX,Y

⇥
L(f(X), Y)

⇤

Given labelled examples {(Xi, Yi)}ni=1, find a classifier f
that minimizes the loss L of our choice

PX,Y

min
f

1

n

nX

i=1

L(f(Xi), Yi)

 Neural Network of depth d and weights (W1,…,Wd)

f(X) = �
⇣
Wd · · · �

�
W2 �(W1X)

�
· · ·

⌘

input layer X output layer f(X)

W1

W2
W3

X1

X2

X3

�(W11X1 +W13X3 +W13X3)

• Choose the loss function (e.g. for binary classification)
‣ L2 loss

‣ Cross entropy loss 
 

• (variants of) gradient descent are used
‣ Efficient gradient computation via backpropagation

Gradient computation is simple

f(X) = �
⇣
Wd · · · �

�
W2 �(W1X)

�
· · ·

⌘

min
W1,...,Wd

1

n

nX

i=1

�
�
Yi log(f(Xi)) + (1� Yi) log(1� f(Xi))}

min
W1,...,Wd

1

n

nX

i=1

(Yi � f(Xi))
2

• Feed-forward NN fails for sequential data that has
‣ causal structures and
‣ variable lengths

• Recurrent neural networks (RNN) have been proposed
‣ captures the causal structure via memory

Sequential data / time series (e.g. translation)

Ht = tanh
�
W Xt + U Ht�1

�

Yt = V Ht

H1 H2 H3 H4

X1

I’ve
X2

had
X3

better
X4

sushi

Y4

• (informal) Problem statement

• What is useful?
‣ Dimensionality reduction (as in visualization or

efficient processing)
‣ Compression (as in smaller file size)
‣ Representation learning for downstream tasks (as in

word2vec)

• Premise of autoencoder:
‣ a good representation should recover X

Autoencoder for unsupervised learning

Given unlabelled training data {Xi}ni=1,
learn a useful representation f(Xi)

• An encoder and a decoder via neural networks

• minimize loss in recovering the original example

Autoencoder

input layer X

W1

W2
W3 W4 W5

W6

min
W1,...,Wd

1

n

nX

i=1

kXi � f(Xi)k2

output layer f(X) = X̂

encoder

learned representation

decoder

Neural network generative models

Z ⇠ N(0, Ik⇥k)

Z1......

.....................

G(Z)1

Z512

G(Z)1024⇥1024⇥3

G(Z) 2 R1024⇥1024⇥3

Part 1A.
Application of deep learning
to communications

Hyeji Kim

University of Illinois at Urbana-Champaign

Organization: This Tutorial

1a. Deep learning
for communication

1b. Deep learning for
statistical inference

2a. Theory for GAN 2b. Learning Gated
Neural Networks

Part-1: Deep learning for information theory

Part-2: Information theory for deep learning

• Models are often well defined => No model deficit

Communications

Receiver
(Decoder)

message

Transmitter
(Encoder)

estimated  
message

Noisy
Channel

noisy
codewordcodeword

• Models are often well defined => No model deficit

• Designing a robust encoder/decoder is critical

Communications

Receiver
(Decoder)

message

Transmitter
(Encoder)

estimated  
message

Noisy
Channel

noisy
codewordcodeword

• Models are often well defined => No model deficit

• Designing a robust encoder/decoder is critical

• Challenge: space of algorithms very large

Communications

Receiver
(Decoder)

message

Transmitter
(Encoder)

estimated  
message

Noisy
Channel

noisy
codewordcodeword

• Central problems in

Channel coding

Channel coding

1950 1960 1970 1980 1990 2000

Convolutional 
codes

BCH
codes

Turbo  
codes

LDPC
codes

2010

Polar  
codes

Hamming
codes

• Central problems in    

• Sporadic progress 

Figure by Kai Niu

Channel coding

+
y = x+ n

n

x

• Classical :    Additive White Gaussian Noise (AWGN) channels

Channel coding

+
y = x+ n

n

x

• Classical :    Additive White Gaussian Noise (AWGN) channels

• Good codes under AWGN

‣ e.g. turbo, LDPC, polar codes

• Channel coding (encoder and decoder)

‣ Network settings    

Open problems: type I

• Channel coding (encoder and decoder)

‣ Network settings     

‣ Channels with feedback

Open problems: type I

• Channel coding (encoder and decoder)

‣ Network settings     

‣ Channels with feedback

‣ Deletion/insertion channels

Open problems: type I

Open problems: type II

• Channel decoding

‣ Encoder is fixed (e.g. standardization)

Open problems: type II

• Channel decoding

‣ Encoder is fixed (e.g. standardization)

‣ Practical channels are not always AWGN

‣ Adaptive and robust decoder to non-AWGN channels?

Open problems: type II

• Channel decoding

‣ Encoder is fixed (e.g. standardization)

‣ Practical channels are not always AWGN

‣ Adaptive and robust decoder to non-AWGN channels?

‣ Reliable decoder for complicated channels

Central goal

Automate the search for codes
and decoders via deep learning

• Part I. Discovering neural codes

‣ Example: channels with feedback

‣ Literature

‣ Open problems

• Part II. Discovering neural decoders

‣ Example: robust/adaptive neural decoding

‣ Literature

‣ Open problems

Outline

• Part I. Discovering neural codes

‣ Example: channels with feedback

‣ Literature

‣ Open problems

• Part II. Discovering neural decoders

‣ Example: robust/adaptive neural decoding

‣ Literature

‣ Open problems

Outline

Open problem 1

Learning a code

for channels with feedback

H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath, “Discovering feedback
codes via deep learning”, 2018

AWGN channels with feedback

• AWGN channel from transmitter to receiver

• Output fed back to the transmitter

• Noiseless feedback

‣ Improved reliability

• BLER decays doubly exponentially in block length  

Literature

• Noiseless feedback

‣ Improved reliability

• BLER decays doubly exponentially in block length   
‣ Coding schemes

• Schalkwijk-Kailath, ’66
• Posterior matching

Literature

• Noisy feedback

‣ Existing schemes sensitive to noise

Literature

• Noisy feedback

‣ Existing schemes sensitive to noise
‣ Negative results
‣ Linear codes very bad (Kim-Lapidoth-Weissman, ’07)

Literature

• Noisy feedback

‣ Existing schemes sensitive to noise
‣ Negative results
‣ Linear codes very bad (Kim-Lapidoth-Weissman, ’07)

• Widely open

Literature

Focus of our work

• AWGN channels with noisy feedback

Focus of our work

• AWGN channels with noisy feedback

• Challenge:   
How to combine noisy feedback and message causally?

Focus of our work

• AWGN channels with noisy feedback

• Challenge:   
How to combine noisy feedback and message causally?

• Model encoder and decoder as neural networks and train

• 100x better reliability under feedback with machine precision

Main results

(Rate 1/3, 50 bits)

SNR (dB)

BER

• Robust to noise in the feedback

Main results

(Rate 1/3, 50 bits, SNR = 0dB)

Feedback SNR (dB)

BER

Neural feedback code

Key: Architectural innovations, ideas from communications

• Two-phase scheme
‣ e.g. maps information bits b1, b2, b3 to a length-6 code

Neural encoder

Phase I. Phase II.

• Two-phase scheme
‣ e.g. maps information bits b1, b2, b3 to a length-6 code

Neural encoder

Phase I. Phase II.

b1 b2 b3

• Two-phase scheme
‣ e.g. maps information bits b1, b2, b3 to a length-6 code

Neural encoder

b1 b2 b3

y1 y2 y3

Encoder receives feedback

Phase I. Phase II.

• Parity for b1

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1

Encoder receives feedback

Codeword

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1

yc1

Encoder receives feedback

Codeword

• Another parity for b1?

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1 c2

yc1

b1, y1 b1,y1,yc1Encoder receives feedback

Codeword

• Parity for b2?

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1 c2

yc1

b1, y1 b2,y2Encoder receives feedback

Codeword

• Parity for b2 and b1

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1 c21

yc1

b1, y1 b2,y2,b1,y1,yc1b1, y1 b1,y1,yc1, b2,y2Encoder receives feedback

Codeword

• Parity for b3, b2 and b1

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1 c21 c321

yc1

b1, y1 b2,y2,b1,y1,yc1b1, y1 b1,y1,yc1, b2,y2 b1,y1,yc1,b2,y2,yc2,b3,y3

yc1 yc2 yc3

Encoder receives feedback

Codeword

b1, y1 yc1, b2,y2 yc2,b3,y3

Recurrent Neural Network for parity generation

b1 b2 b3

y1 y2 y3

c1 c21 c321

yc1yc1 yc2 yc3

h1 h2 h3

• Sequential mapping with memory

Encoder receives feedback

Codeword

b1, y1 yc1, b2,y2 yc2,b3,y3

• Sequential mapping with memory

Recurrent Neural Network for parity generation

b1 b2 b3

y1 y2 y3

c1 c21 c321

yc1yc1 yc2 yc3

h1 h2 h3

hi = f(hi�1, AMTmii)

PmiTmii = g(hi)

Encoder receives feedback

Codeword

Neural decoder

RNN RNN RNN

y1 y2 y3

yc1 yc2 yc3

b1 b2 b3

• Maps (y1, y2, y3, yc1, yc2, yc3) to b1, b2, b3 via bi-direct. RNN

^ ^ ^

^ ^ ^

• Learn the encoder and decoder jointly

Training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
noisy

codeword
estimated
message

Feedback

b b̂

Training

• Auto-encoder training : (input,output) = (b,b)

• Loss : binary cross entropy 
 
 

Training

• Auto-encoder training : (input,output) = (b,b)

• Loss : binary cross entropy 
 
 

• Length of training examples :

‣ Block length K has to be long enough (100)

Intermediate results

BER

SNR (dB)

High error in the last bits

BER

Position

High error in the last bits

c1 c21 c321

b1, y1 b2,y2,yc1 b3, y3,yc2

h1 h2 h3

b1 b2 b3

Phase I.

Phase II.

Idea 1. Zero padding

c1 c21 c321

b1, y1 b2,y2,yc1 b3, y3,yc2

h1 h2 h3

b1 b2 b3

Phase I.

Phase II.

0

0, y4,yc3

h4

c4321

Position

BER

b1 b2 b3 ..… b48 b49 b50

0, y4,yc3

h4

Idea 2. Power allocation

c1 c21 c321

b1, y1 b2,y2,yc1 b3, y3,yc2

h1 h2 h3

b1 b2 b3

Phase I.

Phase II.

0

0, y4,yc3

h4

c4321

x W1 x W2 x W3 x W4

x Wc1 x Wc2 x Wc3 x Wc4

Position

BER

b1 b2 b3 ..… b48 b49 b50

• 100x better reliability under feedback w. machine precision

Results

(Rate 1/3, 50 bits)

SNR (dB)

BER

• 100x better reliability under feedback w. machine precision

Results

(Rate 1/3, 50 bits)

SNR (dB)

BLER

• Robust to noise in the feedback

Results

(Rate 1/3, 50 bits, 0dB)

Feedback SNR (dB)

BER

• Delayed feedback

Results

(Rate 1/3, 50 bits, 0dB)

Feedback SNR (dB)

BER

• Delayed and coded feedback

Results

(Rate 1/3, 50 bits, 0dB)

Feedback SNR (dB)

BER

• How does parity c3 depend on b3, y3, b2,y2, yc2, b1, y1, yc1

Interpretation of neural codes

0,b1, y1 yc1, b2,y2 yc2,b3,y3

b1 b2 b3 …

y1 y2 y3 …

c1 c2 c3 …

yc1yc1 yc2 yc3 …

h1 h2 h3

Feedback

Codeword

…

• How does parity c3 depend on b3, y3, b2,y2, yc2, b1, y1, yc1

• For a rate 1/3 code, ck = (ck,1, ck,2)

Interpretation of neural codes

0,b1, y1 yc1, b2,y2 yc2,b3,y3

b1 b2 b3 …

y1 y2 y3 …

c1 c2 c3 …

yc1yc1 yc2 yc3 …

h1 h2 h3

Feedback

Codeword

…

• How does parity ck = (ck,1, ck,2) depend on bk?

Interpretation of neural codes

bk

ck,2

bk

ck,1

• How does parity ck = (ck,1, ck,2) depend on yk-bk?

Interpretation of neural codes

yk-bk

ck,2

yk-bk

ck,1

(yk-bk: noise added to bk in Phase I)

• How does parity ck = (ck,1, ck,2) depend on yk-bk?

Interpretation of neural codes

ck,2ck,1

bk = 1

bk = -1bk = 1

bk = -1

yk-bkyk-bk

(yk-bk: noise added to bk in Phase I)

• How does parity ck = (ck,1, ck,2) depend on yk-bk?

Interpretation of neural codes

ck,2ck,1

bk = 1

bk = -1bk = 1

bk = -1

yk-bkyk-bk

(yk-bk: noise added to bk in Phase I)

• How does parity ck = (ck,1, ck,2) depend on past bits/noise

bk-1,yk-1, yc,k-1,…, b1, y1, yc1

Interpretation of neural codes

• How does parity ck = (ck,1, ck,2) depend on past bits/noise

bk-1,yk-1, yc,k-1,…, b1, y1, yc1

‣ e.g., E[ck,1bk-1]=-0.24, E[ck,1bk-2]=-0.1, E[ck,1bk-3]= -0.05

Interpretation of neural codes

• How does parity ck = (ck,1, ck,2) depend on past bits/noise

bk-1,yk-1, yc,k-1,…, b1, y1, yc1

‣ e.g., E[ck,1bk-1]=-0.24, E[ck,1bk-2]=-0.1, E[ck,1bk-3]= -0.05

• How encoder maps all past¤t bits/feedback
parity ck is mysterious

Interpretation of neural codes

�

Interpretation of neural codes

• Neural codes require 50 diverse and complicated hidden
states (in RNN)

• Open problem : propose an interpretable encoder

Interpretation of neural codes

• Open problem : propose an interpretable encoder

‣ Train a decoder via neural network

‣ Analyze the error performance

Interpretation of neural codes

• BER remains the same for block lengths 50 & 500

Generalization : block lengths

SNR

BER

• Non-feedback scheme: BLER as block length

Improved error exponents

Block length

BLER

• Concatenated code : turbo + neural feedback code
‣ BLER decays faster

Improved error exponents

Block length

BLER

• Concatenation comes with a cost, “rate”

Open problems : Longer block lengths

• Concatenation comes with a cost, “rate”

• Neural code w. long range dependency?

‣ E.g. interleaver in turbo code

Open problems : Longer block lengths

• Concatenation comes with a cost, “rate”

• Neural code w. long range dependency?

‣ E.g. interleaver in turbo code

‣ We can put interleaver in feedback code. How to decode? 
 

Open problems : Longer block lengths

• Concatenation comes with a cost, “rate”

• Neural code w. long range dependency?

‣ E.g. interleaver in turbo code

‣ We can put interleaver in feedback code. How to decode? 
 
Challenge: training component dec. for belief propagation 
 
(noisy codewords, prior likelihood) -> posterior likelihood

Open problems : Longer block lengths

• Part I. Discovering neural codes

‣ Example: channels with feedback

‣ Literature

‣ Open problems

• Part II. Discovering neural decoders

‣ Example: robust/adaptive neural decoding

‣ Literature

‣ Open problems

Outline

• AWGN

‣ Neural (7,4) code: BER ~ BER of (7,4) Hamming code

Discovering neural codes

T. O’Shea, J. Hoydis, “An Introduction to Deep Learning for the Physical
Layer” 2017

• AWGN

‣ Rate 1 (128 info. bits.) BER ~ 5dB better than QPSK

Discovering neural codes

T. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention” 2016

• No clean model: variation of AWGN channels

Discovering neural codes

S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning-based  
communication over the air”, 2017

Aoudia and Jakob Hoydis, “End-to-End Learning of Communications
Systems Without a Channel Model” 2018

8 bits, 4 (complex) symbols
under a wireless channel

• Clean channel (erasure) / source is complicated (text)

‣ Joint source channel coding

Discovering neural codes

N. Farsad, M. Rao, and A. Goldsmith, “Deep Learning for Joint Source-
Channel Coding of Text” 2018

• Clean channel (erasure) / source is complicated (text)

‣ Joint source channel coding

‣ Improved reliability, evaluated by human

Discovering neural codes

N. Farsad, M. Rao, and A. Goldsmith, “Deep Learning for Joint Source-
Channel Coding of Text” 2018

• Coded computation

‣ J. Kosaian, K.V. Rashmi, and S. Venkataraman, “Learning a Code: Machine
Learning for Approximate Non-Linear Coded Computation”, 2018

• Orthogonal frequency-division multiplexing (OFDM)

‣ A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, “OFDM-
Autoencoder for end-to-end learning of communications systems”, 2018

‣ M. Kim, W. Lee, and D. H. Cho, “A novel PAPR reduction scheme for
OFDM system based on deep learning”, 2018

• Multiple-Input Multiple-Output (MIMO)

‣ T. J. O’Shea, T. Erpek, and T. C. Clancy, “Physical layer deep learning of
encodings for the MIMO fading channel”, 2017

Discovering neural codes

• Part I. Discovering neural codes

‣ Example: channels with feedback

‣ Literature

‣ Open problems

• Part II. Discovering neural decoders

‣ Example: robust/adaptive neural decoding

‣ Literature

‣ Open problems

Outline

• Canonical and benchmark : AWGN

Open problems

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

Gaussian noise

• Canonical and benchmark : AWGN

‣ Challenge 1. neural code that has a long range memory

‣ Challenge 2. jointly training Enc./Dec.

Open problems

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

Gaussian noise

• Channels with no good codes: deletion channel

‣ Practical (e.g. lack of synchronization, DNA sequencing)

Open problems

Deletion
Channel

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

0
1
1
0
1

0
1
1

• Channels with no good codes: deletion channel

‣ Practical (e.g. lack of synchronization, DNA sequencing)

‣ Optimal codes known only if deletion probability v. small

‣ No practical code exists; capacity unknown in general

Open problems

Deletion
Channel

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

0
1
1
0
1

0
1
1

• Channels with no good codes: deletion channel

‣ Practical (e.g. lack of synchronization, DNA sequencing)

‣ Optimal codes known only if deletion probability v. small

‣ No practical code exists; capacity unknown in general

• Many network settings

‣ Relay, interference, Coordinated Multipoint (CoMP)

Open problems

• Part I. Discovering neural codes

‣ Example: channels with feedback

‣ Literature

‣ Open problems

• Part II. Discovering neural decoders

‣ Example: robust/adaptive neural decoding

‣ Literature

‣ Open problems

Outline

Open problem 2

Learning a decoder

under practical channels

H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath, “Communication
algorithms via deep learning” 2018

• Convolutional codes, turbo codes

• Practical
‣ 3G/4G mobile communications (e.g., in UMTS and LTE)
‣ (Deep space) satellite communications

• Achieve performance close to fundamental limit

• Have a natural recurrent structure aligned with RNN

Sequential codes

Sequential codes under AWGN

AWGN
channel

message codeword noisy
codeword

Sequential
code

Sequential codes under AWGN

• Optimal decoders under AWGN
‣ e.g. Viterbi, BCJR decoder for convolutional codes

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
code

Optimal
decoders

Non-AWGN channel

Non-AWGN
Channel

message codeword noisy
codeword

estimated
message

Sequential
code

????

• High-power noise is added occasionally

Bursty noise

• High-power noise is added occasionally

• Heuristic decoders are used

Bursty noise

• High-power noise is added occasionally

• Heuristic decoders are used

• Train a neural network to decode

Bursty noise

• Supervised training with (noisy codeword y, message b)

Neural decoder

AWGN
channel

b x y b

Sequential
code

Decoder
Neural

Network

^

Learn

message codeword noisy
codeword

estimated
message

Noisy
Channel

• Convolutional codes

• Model decoder as a Recurrent Neural Network (RNN)

Neural decoder under AWGN

message codeword noisy
codeword

estimated
message

Convolutio
nal code

Decoder
Recurrent

Neural
Network

AWGN
channel

• Supervised training with (noisy codeword y, message b)

• Loss

Training

AWGN
channel

b x y b

Convolutio
nal code

Decoder
Recurrent

Neural
Network

^

Learn

1[(b− b̂)2]

message codeword noisy
codeword

estimated
message

• Training examples (y, b) :

‣ Length of message bits b = (b1, …, bK)
‣ SNR of the noisy codeword y

Choice of training examples

AWGN
channel

b x y

Convolutio
nal code

message codeword noisy
codeword

Choice of training examples

• Train at a block length 100, fixed SNR (0dB)

AWGN
(SNR 0dB)

message codeword noisy
codeword

estimated
message

Convolutio
nal code

Decoder
Recurrent

Neural
Network

b x y b̂̂

• Train at a block length 100, fixed SNR (0dB)
• Optimal performance for every block lengths, across SNR

Choice of training examples

Convolutio
nal code

Decoder
Recurrent

Neural
Network

message codeword noisy
codeword

estimated
message

AWGN
SNR 0~7dB

b x y b̂̂

• Neural decoder learns decoding convolutional codes

Results

Train: block length = 100, SNR=0dB Test: block length = 10K

SNR

BER

• Neural decoder learns decoding convolutional codes

Results

Train: block length = 100, SNR=0dB Test: block length = 100

SNR

BER

• Training with noisy codewords at test SNR?

Choice of training examples

train SNR = 0dB

train SNR = test SNR

SNR

BER

(test)

• Empirically find best training SNR for different code rates

Choice of training examples

Range of best training SNR

1/7 1/6 1/5 1/4 1/3 1/2
Code rate

SNR

• Hardest training examples

Choice of training examples

Impossible to decode

Range of best training SNR

1/7 1/6 1/5 1/4 1/3 1/2
Code rate

SNR

 Shannon limit

• Idea of hardest training examples

‣ Training with noisy examples

‣ Applied to problems s.t. training examples can be chosen

Adversarial training

• Decoding of turbo codes:     belief propagation of BCJR component decoders   (noisy codeword, prior likelihood) —> posterior likelihood

Decoding turbo codes under AWGN

• Decoding of turbo codes:     belief propagation of BCJR component decoders   (noisy codeword, prior likelihood) —> posterior likelihood

• Learning neural turbo decoder:

‣ Train a neural component decoder with BCJR labels
‣ Stack component decoders and train the BP decoder

Decoding turbo codes under AWGN

• Neural decoder performance ~ turbo codes

Decoding turbo codes under AWGN

SNR

BER

(block length = 1000)

Robustness: Decoding turbo codes under bursty noise

• Neural decoder is more reliable under bursty noise

BER

SNR

• Neural decoder performs better than heuristic decoders

Adaptivity: Decoding turbo codes under bursty noise

BER

SNR

• Part I. Discovering neural codes

‣ Example: channels with feedback

‣ Literature

‣ Open problems

• Part II. Discovering neural decoders

‣ Example: robust/adaptive neural decoding

‣ Literature

‣ Open problems

Outline

• Decoding linear codes

‣ Generalized BP decoder

Neural decoders

Eliya Nachmani, Yair Be'ery, David Burshtein,  
“Learning to decode linear codes using deep learning”, 2016

Eliya Nachmani, Yaron Bachar, Elad Marciano, David Burshtein, Yair Be’ery,  
“Near Maximum Likelihood Decoding with Deep Learning”, 2018

• Decoding polar codes

‣ Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, “On deep
learning-based channel decoding”, 2017

• Decoding under molecular channels

• Nariman Farsad, Andrea Goldsmith, “ Neural Network Detection of Data
Sequences in Communication Systems”, 2018

Neural decoders

• Part I. Discovering neural codes

‣ Example: channels with feedback

‣ Literature

‣ Open problems

• Part II. Discovering neural decoders

‣ Example: robust/adaptive neural decoding

‣ Literature

‣ Open problems

Outline

• Decoding under

‣ channels with memory, deletion channels

‣ practical channels with intractable model

Open problems

• Decoding under

‣ channels with memory, deletion channels

‣ practical channels with intractable model

• Adaptive and robust decoders

‣ fast adaptation to varying channels

Open problems

• Human ingenuity has been the driving force behind
designing codes for past century 

• We provide an alternative approach — training neural
networks — and demonstrate its powerfulness with
feedback code design 

• It has great potential to provide new solutions to
numerous challenges in communications

Summary

• It is critical to bring intuitions and knowledge from
communications and information theory 

• Along the way, we bring new ideas and intuition to
deep learning methodology 

• By interpreting neural communication algorithms, we
gain new ideas and insights in code design 

Summary

Collaborators

Yihan Jiang Ranvir Rana

Sreeram Kannan Sewoong Oh Pramod Viswanath

Deep Learning
for Statistical Inference

Organization: This Tutorial

1a. Deep learning
for communication

1b. Deep learning for
statistical inference

2a. Theory for GAN 2b. Learning Gated
Neural Networks

Part-1: Deep learning for information theory

Part-2: Information theory for deep learning

Collaborators

Rajat
Sen

Karthikeyan
Shanmugan

Arman
Rahimzamani

Himanshu
Asnani

UW, SeattleUT, Austin IBM Research UW, Seattle

Beyond Coding

Two successes of Deep
Learning

✤ Strong classifiers

✤ Powerful Generative
Models

Beyond Coding

Two successes of Deep
Learning

✤ Strong classifiers

✤ Powerful Generative
Models

Statistical Inference Applications

✤ Conditional Independence Testing

✤ Estimating Information Measures

✤ Compressed Sensing

✤ Community Detection

Classifiers

✤ Deep NN and boosted random forests
achieve state-of-the-art performance

✤ Works very well even in practice
when X is high dimensional.

✤ Exploits generic inductive bias:

✤ Invariance

✤ Hierarchical Structure

✤ Symmetry

Classifiers

✤ Deep NN and boosted random forests
achieve state-of-the-art performance

✤ Works very well even in practice
when X is high dimensional.

✤ Exploits generic inductive bias:

✤ Invariance

✤ Hierarchical Structure

✤ Symmetry

Classifiers

✤ Deep NN and boosted random forests
achieve state-of-the-art performance

✤ Works very well even in practice
when X is high dimensional.

✤ Exploits generic inductive bias:

✤ Invariance

✤ Hierarchical Structure

✤ Symmetry

Theoretical guarantees lag severely behind practice!

Generative Models

Generatorz x
Low-dimensional

Latent Space
High-dimensional

data Space

Generative Models

Generatorz x

✤ Trained Real Samples of x

✤ Can generate any number of new samples

Low-dimensional
Latent Space

High-dimensional
data Space

Generative Models

Generatorz x

✤ Trained Real Samples of x

✤ Can generate any number of new samples

Low-dimensional
Latent Space

High-dimensional
data Space

Statistical Inference Applications

✤ Conditional Independence Testing

✤ Estimating Information Measures

✤ Compressed Sensing

✤ Community Detection

Conditional Independence Testing

25
50
75

100

Estimating Total Variation Distance

25
50
75

100

QP

25
50
75

100

Estimating Total Variation Distance

25
50
75

100

QP

n samples n samples

25
50
75

100

25
50
75

100

QP

n samples n samples

Estimate DTV (P,Q) ?

Estimating Total Variation Distance

25
50
75

100

25
50
75

100

QP

n samples n samples

Search beyond Traditional Density Estimation Methods

Estimate DTV (P,Q) ?

Estimating Total Variation Distance

P and Q can be arbitrary.

Total Variation Estimation : Prior Art

✤ Lots of work in information theory on DTV testing

✤ Based on closeness testing between P and Q

✤ Sample complexity = O(n2/3), where n = alphabet size

✤ Not much is known in the real-valued case

* Chan et al, Optimal Algorithms for testing
closeness of discrete distributions, SODA 2014

* Sriperumbudur et al, Kernel choice and classifiability for
RKHS embeddings of probability distributions, NIPS 2009

Total Variation Estimation : Prior Art

✤ Lots of work in information theory on DTV testing

✤ Based on closeness testing between P and Q

✤ Sample complexity = O(n2/3), where n = alphabet size

✤ Not much is known in the real-valued case

Curse of
dimensionality

* Chan et al, Optimal Algorithms for testing
closeness of discrete distributions, SODA 2014

* Sriperumbudur et al, Kernel choice and classifiability for
RKHS embeddings of probability distributions, NIPS 2009

Total Variation Estimation : Prior Art

✤ Lots of work in information theory on DTV testing

✤ Based on closeness testing between P and Q

✤ Sample complexity = O(n2/3), where n = alphabet size

✤ Not much is known in the real-valued case

Curse of
dimensionality

Leverage classifiers which exploit generic inductive bias!

* Chan et al, Optimal Algorithms for testing
closeness of discrete distributions, SODA 2014

25
50
75

100

Distance Estimation via Classification

25
50
75

100

n samples ⇠ P n samples ⇠ Q

25
50
75

100

Distance Estimation via Classification

25
50
75

100

n samples ⇠ P n samples ⇠ Q

(Label 0) (Label 1)

Classifier

25
50
75

100

Distance Estimation via Classification

25
50
75

100

n samples ⇠ P n samples ⇠ Q

(Label 0) (Label 1)

Classifier

1
2 � 1

2DTV(P,Q).
Classification Error
of Optimal Bayes

Classifier
=

25
50
75

100

Distance Estimation via Classification

25
50
75

100

n samples ⇠ P n samples ⇠ Q

(Label 0) (Label 1)

Deep NN, Boosted Trees etc.

1
2 � 1

2DTV(P,Q).
Classification Error of

Optimal Classifier =

* Lopez-Paz et al, Revisiting Classifier two-sample
tests, ICLR 2017

* Sriperumbudur et al, Kernel choice and classifiability for
RKHS embeddings of probability distributions, NIPS 2009

Independence Testing

n samples {xi, yi}ni=1

* Lopez-Paz et al, Revisiting Classifier two-sample
tests, ICLR 2017

* Sriperumbudur et al, Kernel choice and classifiability for
RKHS embeddings of probability distributions, NIPS 2009

Independence Testing

n samples {xi, yi}ni=1

nH0 : X || Y (PCI)

H1 : X 6?? Y (P)

Independence Testing

n samples {xi, yi}ni=1

nH0 : X || Y (PCI)

H1 : X 6?? Y (P)

Classify

P(p(x, y))

PCI(p(x)p(y))

Independence Testing

n samples {xi, yi}ni=1

nH0 : X || Y (PCI)

H1 : X 6?? Y (P)

Classify

P(p(x, y))

PCI(p(x)p(y))PCI(p(x)p(y))

Independence Testing

n samples {xi, yi}ni=1

nH0 : X || Y (PCI)

H1 : X 6?? Y (P)

Classify

P(p(x, y))

PCI(p(x)p(y))

Permutation

PCI(p(x)p(y))

Independence Testing
n samples {xi, yi}ni=1

Split
Equally

Independence Testing
n samples {xi, yi}ni=1

P(p(x, y))

Split
Equally

Independence Testing
n samples {xi, yi}ni=1

P(p(x, y))

Split
Equally

Label 0

Independence Testing
n samples {xi, yi}ni=1

P(p(x, y))

Split
Equally

Label 0 yi’s are permuted

Independence Testing
n samples {xi, yi}ni=1

P(p(x, y))

Split
Equally

Label 0 yi’s are permuted

PCI(p(x)p(y))

Independence Testing
n samples {xi, yi}ni=1

P(p(x, y))

Split
Equally

Label 0 yi’s are permuted

PCI(p(x)p(y))

Label 1

Independence Testing
n samples {xi, yi}ni=1

P(p(x, y))

Split
Equally

Label 0 yi’s are permuted

PCI(p(x)p(y))

Label 1

*Lopez-Paz et al, Revisiting Classifier two-sample
tests, ICLR 2017

* Sriperumbudur et al, Kernel choice and classifiability for
RKHS embeddings of probability distributions, NIPS 2009

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

vs

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

Classify

vs

P(p(x, y, z))

PCI(p(z)p(x|z)p(y|z))

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

Classify

vs

P(p(x, y, z))

PCI(p(z)p(x|z)p(y|z))
How to get PCI

(p(z)p(x|z)p(y|z)?

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

Classify

vs

P(p(x, y, z))

PCI(p(z)p(x|z)p(y|z))
Given samples ⇠ p(x, z)
How to emulate p(y|z)?

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

Classify

vs

✤ KNN Based
Methods

✤ Kernel
Methods

P(p(x, y, z))

PCI(p(z)p(x|z)p(y|z))

Emulate p(y|z) as q(y|z)

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

Classify

vs

P(p(x, y, z))

P̃CI(p(z)p(x|z)q(y|z))

P̃CI(p(z)p(x|z)q(y|z))

Emulate p(y|z) as q(y|z)
✤ KNN Based

Methods

✤ Kernel
Methods

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

Classify

vs

P(p(x, y, z))

P̃CI(p(z)p(x|z)q(y|z))

P̃CI(p(z)p(x|z)q(y|z))

Emulate p(y|z) as q(y|z)
✤ KNN Based

Methods

✤ Kernel
Methods

✤ [KCIT] Gretton et al, Kernel-based conditional independence test and
application in causal discovery, NIPS 2008

✤ [KCIPT] Doran et al, A permutation-based kernel conditional
independence test, UAI 2014

✤ [CCIT] Sen et al, Model-Powered Conditional Independence Test, NIPS
2017

✤ [RCIT] Strobl et al, Approximate Kernel-based Conditional Independence
Tests for Fast Non-Parametric Causal Discovery, arXiv 

Conditional Independence Testing

n samples {xi, yi, zi}ni=1

n
H0 : X || Y |Z (PCI)

H1 : X 6?? Y |Z (P)

Classify

vs

P(p(x, y, z))

P̃CI(p(z)p(x|z)q(y|z))

P̃CI(p(z)p(x|z)q(y|z))

Emulate p(y|z) as q(y|z)
✤ KNN Based

Methods

✤ Kernel
Methods

✤ Limited to low-dimensional Z.

 In practice, Z is often high dimensional.

 (Eg. In graphical model, conditioning set can be
entire graph.)

How loose can the estimate be for P̃CI
or q(y|z)?

As long as the density function q(y|z) > 0 whenever p(y, z) > 0.

How loose can the estimate be for P̃CI
or q(y|z)?

Novel Bias Cancellation Method in Mimic-and-Classify works

As long as the density function q(y|z) > 0 whenever p(y, z) > 0.

Mimic Functions : GANs, Regressors etc.

How loose can the estimate be for P̃CI
or q(y|z)?

Novel Bias Cancellation Method in Mimic-and-Classify works

Mimic and Classify
Mimic
Step

Classify
Step

Mimic and Classify
50

100
Mimic
Step

Classify
Step

D ⇠ p(x, y, z)

Mimic and Classify
50

100

50
100

50
100

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

Mimic and Classify
50

100

50
100

50
100

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)
 Dataset D

Dataset D’
MIMIC

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

(Label 0) (Label 1)

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

(Label 0) (Label 1)
D̃ = D1 [D0

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

(Label 0) (Label 1)
D̃ = D1 [D0

D̃

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

(Label 0) (Label 1)
D̃ = D1 [D0

D̃

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Classification Error : Exyz

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

(Label 0) (Label 1)
D̃ = D1 [D0

D̃ D̃�x

Drop x

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Classification Error : Exyz

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

(Label 0) (Label 1)
D̃ = D1 [D0

D̃ D̃�x

Drop x

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Classification Error : Classification Error : Exyz Eyz

Mimic and Classify
50

100

MIMIC

50
100

50
100

50
100

(Label 0) (Label 1)
D̃ = D1 [D0

D̃ D̃�x

Drop x

Mimic
Step

Classify
Step

D1 ⇠ p(x, y, z)

D2 ⇠ p(x, y, z)D ⇠ p(x, y, z)

D0 ⇠ p(z)p(x|z)q(y|z)

Classification Error : Classification Error : Exyz Eyz

if |Exyz � Eyz| > ⌧ , Return H1

else Return H0

Mimic and Classify
Mimic
Step

As long as the density function q(y|z) > 0 whenever p(y, z) > 0.

Classify
Step

Mimic and Classify
Mimic
Step

*The errors here are the corresponding optimal Bayes classifier errors.

As long as the density function q(y|z) > 0 whenever p(y, z) > 0.

Classify
Step

|ED[Exyz]�ED[Eyz]| = 0 $ H0 is true

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))
2|ED[Exyz]�ED[Eyz]|

Mimic and Classify (Theory)

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))
2|ED[Exyz]�ED[Eyz]|

Mimic and Classify (Theory)

�
Z

y,z

min(p(z)q(y|z), p(z)p(y|z))(1� ✏(y, z))d(y, z)

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))
2|ED[Exyz]�ED[Eyz]|

Mimic and Classify (Theory)

�
Z

y,z

min(p(z)q(y|z), p(z)p(y|z))(1� ✏(y, z))d(y, z)

Where: ✏(y, z) = max
⇡2⇧(p(x|z),p(x0|y,z))

E⇡[1{x=x0}|y, z]

Conditional dependence $ ✏(y, z) < 1 with non-zero probability

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))
2|ED[Exyz]�ED[Eyz]|

Mimic and Classify (Theory)

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))

�
Z

y,z

min(p(z)q(y|z), p(z)p(y|z))(1� ✏(y, z))d(y, z)

Where: ✏(y, z) = max
⇡2⇧(p(x|z),p(x0|y,z))

E⇡[1{x=x0}|y, z]

Conditional dependence $ ✏(y, z) < 1 with non-zero probability

As long as the density function q(y|z) > 0 whenever p(y, z) > 0,
then conditional dependence implies that 2|ED[e]� ED[e�x)]| > 0.

Theorem 1

2|ED[Exyz]�ED[Eyz]|

As long as the density function q(y|z) > 0 whenever p(y, z) > 0,
then conditional dependence implies that 2|ED[e]� ED[e�x)]| > 0.2|ED[Exyz]�ED[Eyz]| > 0

Conditional independence implies p(x,y, z) = p(z)p(y|z)p(x|z).

DTV(p(z)p(y|z), p(z)q(y|z)) = DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))

Mimic and Classify (Theory)

Conditional independence implies p(x,y, z) = p(z)p(y|z)p(x|z).

DTV(p(z)p(y|z), p(z)q(y|z)) = DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))

Mimic and Classify (Theory)

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))
2|ED[Exyz]�ED[Eyz]|

Conditional independence implies p(x,y, z) = p(z)p(y|z)p(x|z).

DTV(p(z)p(y|z), p(z)q(y|z)) = DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))

= DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))

Mimic and Classify (Theory)

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))
2|ED[Exyz]�ED[Eyz]|

Conditional independence implies p(x,y, z) = p(z)p(y|z)p(x|z).

DTV(p(z)p(y|z), p(z)q(y|z)) = DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))

= DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))
= DTV(p(x,y, z), p(x|z)p(z)q(y|z))

Mimic and Classify (Theory)

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))
2|ED[Exyz]�ED[Eyz]|

Conditional independence implies that 2|ED[e]� ED[e�x)]| = 0

Conditional independence implies p(x,y, z) = p(z)p(y|z)p(x|z).

DTV(p(z)p(y|z), p(z)q(y|z)) = DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))

2|ED[e]� ED[e�x)]|
= DTV(p(z,x,y), p(z)q(y|z)p(x|z))�DTV(p(y, z), p(z)q(y|z))

= DTV(p(x|z)p(z)p(y|z), p(x|z)p(z)q(y|z))
= DTV(p(x,y, z), p(x|z)p(z)q(y|z))

Mimic and Classify (Theory)

Theorem 2

2|ED[Exyz]�ED[Eyz]| = 0

2|ED[Exyz]�ED[Eyz]|

Combining Theorem 1 and Theorem 2

Mimic and Classify (Theory)

Theorem 3

As long as the density function q(y|z) > 0 when p(y, z) > 0
|ED[Exyz]�ED[Eyz]| = 0 $ H0 is true

MIMIFY - CGAN

Deep Learning based MIMIC Functions

Generator
G(z,s)

s

z

Discriminator
D(y,z)

(y,z)

[0,1]
Gaussian
Latent
Space

MIMIFY - CGAN

Deep Learning based MIMIC Functions

Generator
G(z,s)

s

z

Discriminator
D(y,z)

(y,z)

[0,1]

⇠ q(y|z)

Gaussian
Latent
Space

MIMIFY - CGAN

Deep Learning based MIMIC Functions

MIMIFY - REG

Generator
G(z,s)

s

z

Discriminator
D(y,z)

(y,z)

[0,1]

⇠ q(y|z)

Gaussian
Latent
Space

Regress to estimate r(z) = E[Y |Z = z]

MIMIFY - CGAN

Deep Learning based MIMIC Functions

MIMIFY - REG

Generator
G(z,s)

s

z

Discriminator
D(y,z)

(y,z)

[0,1]

⇠ q(y|z)

Gaussian
Latent
Space

Regress to estimate r(z) = E[Y |Z = z]

ŷ = r(z)+ Gaussian Noise ⇠ q(y|z)

MIMIFY - CGAN

Deep Learning based MIMIC Functions

MIMIFY - REG

Generator
G(z,s)

s

z

Discriminator
D(y,z)

(y,z)

[0,1]

⇠ q(y|z)

Gaussian
Latent
Space

Regress to estimate r(z) = E[Y |Z = z]

ŷ = r(z)+ Gaussian Noise ⇠ q(y|z)
(or, laplacian noise)

Post-Nonlinear Noise Synthetic Experiments: AUROC

Experiments

Flow-cytometry Data

Experiments

Gene Regulatory Network Inference (DREAM)

Experiments

Estimating Information Measures

25
50
75

100

25
50
75

100

QP

n samples n samples

Estimating Kullback-Leibler Distance

Estimate DKL(P k Q) ?

25
50
75

100

25
50
75

100

QP

n samples n samples

Estimating Kullback-Leibler Distance

Estimate DKL(P k Q) ?

Search beyond Traditional Density Estimation Methods

P and Q can be arbitrary.

25
50
75

100

Neural Network Approximation

25
50
75

100

n samples ⇠ P n samples ⇠ Q

25
50
75

100

Neural Network Approximation

25
50
75

100

n samples ⇠ P n samples ⇠ Q

Donsker-Varadhan Dual Representation:
DKL(P k Q) = supT EP [T]� log(EQ[eT])

25
50
75

100

Neural Network Approximation

25
50
75

100

n samples ⇠ P n samples ⇠ Q

Donsker-Varadhan Dual Representation:
DKL(P k Q) = supT EP [T]� log(EQ[eT])

• T Rich NN class

• E Sample Averages

• supT Obtained via Stochastic Gradient search

25
50
75

100

Mutual Information Neural Estimation (MINE)

25
50
75

100

n samples ⇠ P n samples ⇠ Q

Donsker-Varadhan Dual Representation:
DKL(P k Q) = supT EP [T]� log(EQ[eT])

I(X;Y) = DKL(PXY k PXPY)

* *Benghazi et al, MINE : Mutual Information
* Neural Estimation, ICML 2018

25
50
75

100

Mutual Information Neural Estimation (MINE)

25
50
75

100

n samples ⇠ P n samples ⇠ Q

Donsker-Varadhan Dual Representation:
DKL(P k Q) = supT EP [T]� log(EQ[eT])

I(X;Y) = DKL(PXY k PXPY)
Generated via
Permutation

* *Benghazi et al, MINE : Mutual Information
* Neural Estimation, ICML 2018

Compressed Sensing

z

Generative Model and Linear Measurements

Low k-dimensional
Latent Space

Generator
G(z)

z

Generative Model and Linear Measurements

x

Low k-dimensional
Latent Space

High n-dimensional
Generated Data

Generator
G(z)

z
Measurement

Matrix
A

Noise

Generative Model and Linear Measurements

x y = Ax + Noise
Low k-dimensional

Latent Space

High n-dimensional
Generated Data

m-dimensional
observations

Generator
G(z)

z
Measurement

Matrix
A

Noise

Generative Model and Linear Measurements

Given y : Guess x?

x y = Ax + Noise
Low k-dimensional

Latent Space

High n-dimensional
Generated Data

m-dimensional
observations

Generator
G(z)

z
Low k-dimensional

Latent Space

High n-dimensional
Generated Data

Measurement
Matrix

A
y = Ax + Noise

Noise

Generative Model and Linear Measurements

x

How large is m (#measurements)?

m-dimensional
observations

Generator
G(z)

z
Low k-dimensional

Latent Space

High n-dimensional
Generated Data

Measurement
Matrix

A
y = Ax + Noise

Noise

Compressed Sensing

x

m-dimensional
observations

A = scaled Gaussian Random Matrix, G = d-layer NN
then, m = O(kd log n) su�ce.

* *Bora et al, Compressed Sensing using
Generative Models, ICML 2017

*Bora et al, AmbientGAN: Generative models from
lossy measurements, ICLR 2018

*Yeh et al, Semantic Image Inpainting with Deep
Generative Models, CVPR 2017

Open Problems

✤ Statistical property testing and estimation problems
✤ Beyond DTV: Distance measure estimation using classifier.
✤ Time-series data (Directed information estimation and testing).

✤ Information bottleneck and deep learning
✤ Relationship hotly disputed. Need strong MI estimators!

✤ Conditional mutual information estimation
✤ Plays vital role in controlling bias or privacy

✤ I(Salary ; Race | Performance) small

✤ Rely on GAN based generative models
✤ Does not work well in small sample regime
✤ Need for Unified framework

Sewoong Oh

University of Illinois at Urbana-Champaign

Part 2A.
Applications of (Information) Theory
to Generative Adversarial Networks

Organization: This Tutorial

1a. Deep learning
for communication

1b. Deep learning for
statistical inference

2a. Theory for GAN 2b. Learning Gated
Neural Networks

Part-1: Deep learning for information theory

Part-2: Information theory for deep learning

• How do we model the distribution of complex data  
in high-dimensions?

• Parametric models (e.g. mixture of Gaussians) fail on
complex data

• Non-parametric models (e.g. KDE, Nearest Neighbor) fail 
in high dimensions

Neural network generative models

Neural network generative models

Z ⇠ N(0, Ik⇥k)

Z1......

.....................

G(Z)1

Z512

G(Z)1024⇥1024⇥3

G(Z) 2 R1024⇥1024⇥3

• A generative model takes a random vector Z and
produces samples G(Z)

• The neural network weights can be trained by gradient
descent

Generative Adversarial Network

Z

G(Z)

X
D(X)real

1
fake

0
real

1
real

1

min
G

max
D

V (G,D)

[“Generative adversarial nets”,Goodfellow et al., 2014]

• GAN loss choices
‣ Cross-Entropy loss

Generative Adversarial Network

min
G

max
D

EPreal [log(D(X))] + EQG [log(1�D(X))]

D⇤(X) =
Preal(X)

Preal(X) +QG(X)

min
G

2 DJS(PrealkQG)� log 4

[“Generative adversarial nets”,Goodfellow et al., 2014]

DJS(PkQ) =
1

2
DKL

⇣
PkP +Q

2

⌘
+

1

2
DKL

⇣
QkP +Q

2

⌘

• GAN loss choices
‣ 0-1 loss

‣ Other popular choices: f-divergence, Wasserstein distance

Generative Adversarial Network

[“Wasserstein GAN”, Arjovsky,Chintala,Bottou,2017] 
[“f-gan”Nowozin,Cseke,Tomioka,2016]

min
G

max
D

EPreal [D(X)]� EQG [D(X)]

D⇤(X) = I{Preal(X) > QG(X)}

min
G

dTV(Preal, QG)

• Mode Collapse collectively refers to  
the lack of diversity in the generated samples

Mode Collapse is a major challenge in GAN

target distribution 
mixture of 25 Gaussians in 2D

Modes
(Max 25)

GAN 17.3

• Mode Collapse collectively refers to  
the lack of diversity in the generated samples

Mode Collapse is a major challenge in GAN

target distribution 
Stacked MNIST

Modes
(Max 1000)

DCGAN 99.0

• Heuristics tailored for each task (or dataset) don’t
generalize to new tasks

Mode Collapse is prevalent in real applications

[“Conditional image synthesis with auxiliary classifier GANs”, Odena,Olah,Shlens, 2016] 
[“GANs with projection discriminator”, Miyato,Koyama, 2018]

• Heuristics provide varying levels of improvement, but
Mode Collapse is a fundamental challenge

‣ “A man in a orange jacket with sunglasses and a hat ski down a hill.”

Mode Collapse is prevalent in real applications

[“Generating interpretable images with controllable structure”, Reed et al., 2016]

• Through the lens of binary hypothesis testing,  
we provide new formal definition of Mode Collapse

(Detection) theoretical understanding of Mode Collapse

[“PacGAN: the power oft samples in generative adversarial networks”,Lin,Khetan,Oh,Fanti,
2017]

• The 2-D region representation
‣ allows formal comparison of strengths of Mode Collapse
‣ read off all divergences
‣ intuition on how to understand adversarial training
‣ new architecture for GAN
‣ new proof technique to prove our main results

 0

 0.5

 1

 0 0.5 1

Mode Collapse region

1

1

P

R(P,Q1)
1

1

Q1

0.2 1.2

"

�

 0

 0.5

 1

 0 0.5 1

Mode Collapse region

1

1

P

R(P,Q1)
1

1

Q1

0.2 1.2

"

�

 0

 0.5

 1

 0 0.5 1

Mode Collapse region

1

1

P

R(P,Q1)
1

1

Q1

0.2 1.2

"

�

 0

 0.5

 1

 0 0.5 1

Mode Collapse region

1

1

P

R(P,Q1)
1

1

Q1

0.2 1.2

"

�

 0

 0.5

 1

 0 0.5 1

Mode Collapse region

1

1

P

R(P,Q1)
1

1

Q1

0.2 1.2

"

�

 0

 0.5

 1

 0 0.5 1

Mode Collapse region

1

1

P

R(P,Q1)
1

1

Q1

0.2 1.2

"

�

 0

 0.5

 1

 0 0.5 1

Mode Collapse region

1

1

P

R(P,Q1)
1

1

Q1

0.2 1.2

"

�

(Detection) theoretical understanding of Mode Collapse

Target distribution P

1

1

P

1

1

0.6

1.4

0.5

Q2

dTV(P,Q1) = 0.2 dTV(P,Q2) = 0.2

Generator Q1 Generator Q2

Strong WeakMode Collapse

Loss

1

1

Q1

0.2 1.2

• The 2-D region representation
‣ allows formal comparison of strengths of Mode Collapse
‣ Read off all divergences

Mode Collapse region

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

"

�

R(P,Q2)

 0

 0.5

 1

 0 0.5 1

dTV(P,Q2) = 0.2

"

�

dTV(P,Q1) = 0.2

Alternate view of GAN training via Mode Collapse region

1

1

P

1

1

Q1

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

"

�

dTV(P,Q1) = 1.0
target distribution

generator distribution

corresponding
Mode Collapse region

GAN training via Mode Collapse region

1

1

Q1

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

"

�

dTV(P,Q1) = 0.8

1

1

P
target distribution

generator distribution

corresponding
Mode Collapse region

GAN training via Mode Collapse region

1

1

Q1

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

"

�

dTV(P,Q1) = 0.5

1

1

P
target distribution

generator distribution

corresponding
Mode Collapse region

GAN training via Mode Collapse region

1

1

Q1

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

"

�

dTV(P,Q1) = 0.2

1

1

P
target distribution

generator distribution

corresponding
Mode Collapse region

• Varying degrees of Mode Collapses are indistinguishable
from the standard choices of losses  

• Goal: how do we design new (family of) losses that
naturally penalizes Mode Collapse?

Main challenge

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

"

�

R(P,Q2)

 0

 0.5

 1

 0 0.5 1

dTV(P,Q2) = 0.2

"

�

dTV(P,Q1) = 0.2

• Mathematical intuitions from
‣ Comparisons of experiments [Blackwell1953]
‣ (reverse) Data-processing inequality
‣ Differential Privacy [KairouzOhViswanath2017]

Lifting the loss to the product distributions

DTV(P
m, Qm) naturally penalizes mode collapse

[“Equivalent comparisons of experiments”,Blackwell,1953] 
[“The composition theorem for differential privacy”, Kairouz,Oh,Viswanath,2017]

• Discriminator needs to sample from the product distribution

PacGAN: principled approach to Mode Collapse

Z

G(Z)

X real
1

fake
0

real
1

real
1

⇥2

D(X1, X2)

Benchmark test

Modes
(Max 25)

GAN 17.3
PacGAN2 23.8
PacGAN3 24.6
PacGAN4 24.8

Mixture of Gaussians GAN PacGAN2

Benchmark tests

Modes (Max 1000)
DCGAN 99.0
ALI 16.0
Unrolled GAN 48.7
VeeGAN 150.0
PacDCGAN2 1000.0
PacDCGAN3 1000.0
PacDCGAN4 1000.0

[“VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning”,
Srivastava,Valkov,Russell,Gutmann,Sutton, 2017]

Stacked MNIST DCGAN PacDCGAN2

We can “measure” Mode Collapse via lifting

1

1

0.6

1.4

0.5

Q2

1

1

Q1

0.2 1.2

dTV(P,Q2) = 0.2

R(P,Q2)

 0

 0.5

 1

 0 0.5 1"

�

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

"

�

dTV(P,Q1) = 0.2

If R(P,Q1) ◆ R(P,Q2), then R(Pm, Qm
1) ◆ R(Pm, Qm

2)

(reverse) data processing inequality [KairouzOhViswanath17]

(reverse) data-processing inequality

R(P,Q2)

"

�

R(P,Q1)

"

�

1
10.5

Q2 ⇥Q2

0.62

1.42

1.4⇥ 0.61Q1 ⇥Q1

dTV(P
2, Q2

1) = 0.36 dTV(P
2, Q2

2) = 0.24

 0

 0.5

 1

 0 0.5 1
 0

 0.5

 1

 0 0.5 1

Lifting naturally penalizes Mode Collapse

packing size m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6

dTV(P
m, Qm

2)

dTV(P
m, Qm

1)
Strong

Weak

Mode Collapse

Loss

• Evolution of TV distances

Analysis of lifted TV

max
P,Q

/min
P,Q

dTV(P
m, Qm)

subject to dTV(P,Q) = ⌧

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

dTV(Pm, Qm)

packing size m

Analysis of lifted TV with Mode Collapse

dTV(Pm, Qm)

packing size m

max
P,Q

/min
P,Q

dTV(P
m, Qm)

subject to dTV(P,Q) = ⌧
with ("0, �0)-mode collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

Analysis of lifted TV with Mode Collapse

dTV(Pm, Qm)

packing size m

max
P,Q

/min
P,Q

dTV(P
m, Qm)

subject to dTV(P,Q) = ⌧
without ("0, �0)-mode collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

Analysis of lifted TV with Mode Collapse

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

dTV(Pm, Qm)

packing size m

Strong

Weak

Mode Collapse

• There has been extensive effort on designing new losses
for GANs, but empirically compared

• We give a formal comparisons of loss function 
 

• Can we formally compare other popular loss functions?

Remaining challenges in Mode Collapse

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

dTV(P,Q) �mode dTV(P
m, Qm)

dTV(P,Q) �mode dJS(P,Q)

dTV(P,Q) dJS(P,Q)

Strong

Weak

Mode Collapse

max
P,Q

/min
P,Q

dJS(P
m, Qm)

subject to dTV(P,Q) = ⌧
with ("0, �0)-mode collapse

Generalization [Theorem4.1,BCST18]

[“Generalization and Equilibrium in Generative Adversarial Network”,Arora et al.,2017] 
[“On the Discrimination-Generalization Tradeoff in GANs”,Zhang et al., 2017] 
[“Some Theoretical Properties of GANs”,Biau,Cadre,Sangnier,Tanielian 2018]

then E[DJS(PrealkP✓̂)] = E[DJS(PrealkP✓⇤)] +O

⇣
"
2 +

r
p+ q

n

⌘

✓̂ 2 argmin
✓2⇥

max
w2W

1

n

nX

i=1

log(Dw(Xi)) +
1

n

nX

i=1

log(1�Dw(G✓(Zi)))

✓⇤ 2 argmin
✓2⇥

DJS(PrealkP✓)

Suppose Dw and G✓ are Lipschitz in w 2 W ✓ Rp and ✓ 2 ⇥ ✓ Rq

and for all ✓ 2 ⇥, there exists w 2 W such that kDw �D⇤(P✓)k1 "

representation power of ⇥
representation power of W

Lipschitz condition

Generalization [Arora et al. 17]
• Neural network generative modes are not Lipschitz in

general. In one extreme, if we allow the generator to be
chosen from any distribution, then GAN does not
generalize in JS-divergence [Lemma 1, Arora et al.17]. 
 
 
In other words, memorization or overfitting happens.

• However, they generalize in the loss (which is the
property of the NN discriminator, and not the generator)
[Theorem 3.1, Arora et al. 17]:

DJS(Preal, P✓̂) = log 2

��L(Preal, P)� L̂(Preal, P)
�� = Õ

⇣ r
p

n

⌘

with high probability

Lipschitz condition

Open questions in generalization

• Can we provide more fine grained generalization bounds
that differentiate different choices of the loss functions?

• The analysis critically relies on Lipschitz condition. In
practice, regularizers are commonly used in training the
discriminator. Can generalization bounds help design
new regularizers, and understand their roles?

• How do we solve the minimax optimization and learn ?✓̂

• Some of the open equations are answered in LQG
setting with Linear generator, Quadratic loss, and
Gaussian distribution. If the discriminator is constrained
to be quadratic function of the input, then [Theorem
3,FSXT17]

•  

• However, for unconstrained discriminator [Theorem
2,FSXT17] 

• Discriminator of matching complexity is critical

Role of the discriminator for Gaussian [FSXT17]

[“Understanding GANs: the LQG Setting”,Feizi,Suh,Xia,Tse, 2017]

��⌃⇤ � ⌃̂
�� = O

⇣ r
d

n

⌘

with high probability

��⌃⇤ � ⌃̂
�� = O

⇣
n
� 2

d

⌘

• What about mixture of two Gaussians?

• For Gaussian, constraining to linear generators reduces
the problem to standard parameter learning (in this case
the covariance matrix). For mixture of Gaussians, the
counterpart is two linear generators with gating.
However, this is further departure from the typical GAN.

• At the discriminator, a counterpart will be tensor
methods, which is only known to recover the mean of
the mixtures and not the covariance matrices.

Open questions in the role of the discriminator

• One weakness of GAN is that the latent variable Z has
no interpretable meaning

• Ideally,

Interpretability / Disentangling Representation

[“InfoGAN: Interpretable Representation Learning by Information Maximizing GANs”,Chen et
al., 2016]

Z2 : rotation Z3 : widthZ1 : digits

Z

G(Z)

• Proposes maximizing mutual information between the
image G(Z1,Z2) and a part of the latent representation
Z1  

• Challenge: minimizing (negative) mutual information 
Solution: Variational method to optimize over another
neural network for Q(Z1|X)

InfoGAN, Chen et al. 2016

min
G

max
D

V (D,G) � � I(Z1;G(Z1, Z2))

min
G

max
D

V (D,G) � �EX⇠G(Z1,Z2)[EZ̃1⇠P (Z1|X)[logQ(Z̃1|X)]]

Z1

Z2
G(Z1, Z2)

real data X
D(X)

Q(Z1|X)
Z1

• Mode Collapse
‣ [PacGAN: the power of two samples in generative

adversarial networks, Lin,Khetan,Fanti,Oh,2017]
‣ Theoretical understanding leads to the design of new

principled architectures  

• Generalization
‣ Beginning of theoretical understanding of the tradeoffs

involved
‣ Potential to lead to new designs of loss and regularizers 

• Interpretation
‣ Powerful tool via mutual information
‣ Theoretical understanding is missing

Summary

Collaborators

Zinan Lin (CMU)

Giulia Fanti (CMU)Ashish Khetan (Amazon AI)

Kiran Thekumparampil (UIUC)

Organization: This Tutorial

1a. Deep learning
for communication

1b. Deep learning for
statistical inference

2a. Theory for GAN 2b. Learning Gated
Neural Networks

Part-1: Deep learning for information theory

Part-2: Information theory for deep learning

Learning in Gated Neural Networks

Ashok Vardhan Makkuva (UIUC)
Sewoong Oh (UIUC)

Pramod Viswanath (UIUC)
Sreeram Kannan (UW, Seattle)

Gated Recurrent Neural Networks

Well-known examples: LSTM and GRU

State-of-the-art results in many challenging ML tasks

Figure: Google Duplex

Siri, Alexa and more...

NNs and RNNs
Feed-forward neural networks

Recurrent neural networks (Gating)

Mixture-of-Experts

Jacobs, Jordan, Nowlan and Hinton, 1991 f = sigmoid,
g = linear, tanh,ReLU

g(a�1x) g(a�2x)
xx

y

f (w�x)
x

f

1 − f

f = sigmoid, g = linear, tanh,ReLU

MoE generalizes 2-layer Neural Network

g(a�1x) g(a�2x)
xx

w1 w2

y

(a) 2-node NN

g(a�1x) g(a�2x)
xx

y

f (w�x)
x

f

1 − f

(b) 2-MoE

MoE: Modern relevance

Outrageously large neural networks

What is known about MoE?

No provable learning algorithms for parameters1 /

120 years of MoE, MoE: a literature survey

Open problem for 25+ years

g(a�1x) g(a�2x)

f

1 − f

xx

y

f (w�x)
x

⇔ Py �x = f (w�x) ⋅N (y �g(a�1x),�2) + (1 − f (w�x)) ⋅N (y �g(a�2x),�2)
Open question

Given n i.i.d. samples (x(i), y (i)), does there exist an e�cient learning
algorithm with provable theoretical guarantees to learn the regressors
a1,a2 and the gating parameter w?

Gradient descent

min
✓

EL(y , ✓(x)) (1)

✓t+1 = ✓t − �∇✓EL(y , ✓(x)) (2)

If loss is convex in parameters, problem is easy.
However, loss is highly non-convex

Fundamental Reason for Non-convexity

Let w1,w2, a1, a2 be the true parameters.

Permutation invariance:

L(a1, a2,w1,w2) = L(a2, a1,w2,w1) (3)

If loss is convex, choosing all hidden nodes same is optimal!!!

L�a1 + a2
2

,
a1 + a2

2
,
w1 +w2

2
,
w1 +w2

2
� = L(a1, a2,w1,w2) (4)

Loss cannot be convex in NN or MoE!

MoE vs. 2-layer Neural Network

g(a�1x) g(a�2x)
xx

w1 w2

y

(a) 2-node NN

g(a�1x) g(a�2x)
xx

y

f (w�x)
x

f

1 − f

(b) 2-MoE

MoE has both classifier and regressor!

MoE: Modern relevance

Outrageously large neural networks

MoE: Modular structure

Key observation

If we know the regressors, learning the gating parameter is easy and
vice-versa. How to break the gridlock?

Focus of this talk: Breaking the gridlock

First learning guarantees for MoE

Two novel approaches to learn the parameters:

Method 1: Beyond gradient descent

Novel algorithm with first recoverable guarantees

Method 2: Change the loss function

Non-trivial loss function for which GD optimal

Both approaches work with global initializations
� restriction: x is Gaussian

Generalizability

k-MoE

Generalizability

Hierarchical mixture of experts (HME)

Method 1: Design of algorithms

Algorithmic approach: Simplified model

Model for MoE:

Py �x = f (w�x) ⋅N (y �g(a�1x),�2) + (1 − f (w�x)) ⋅N (y �g(a�2x),�2)
Without gating:

Py �x = p ⋅N (y �g(a�1x),�2) + (1 − p) ⋅N (y �g(a�2x),�2)

Mixture of generalized linear models (GLMs)!
� Similar to 2-layer NN
� How do we learn a1 and a2 without knowing p?

� Method of moments [Sedghi, Janzamin and Anandkumar ’16]

Method of moments in GLMs

Basic idea [Sedghi et al ’16]: Construct a third-order
super-symmetric tensor from data such that

E((X ,Y)) =�
i

ai ⊗ ai ⊗ ai ⇒ ai can be recovered

How do we construct ?
� Stein’s lemma

Stein’s lemma 101

Stein’s lemma

For f ∶ Rd → R and x ∼N (0, Id),
E[f (x) ⋅ x] = E[∇x f (x)] ∈ Rd .

Non-linear regression using Stein’s lemma: If y = g(a�1x) +N, then

E[y ⋅ x]�����������������������
Estimated from samples

= E[g(a�1x) ⋅ x] +E[N ⋅ x]��������������������������=0
= E[∇xg(a�1x)]∝ a1

Mixture of GLMs: Stein’s lemma 101

Recall, for mixture of GLMs:

Py �x = p ⋅N (y �g(a�1x),�2) + (1 − p) ⋅N (y �g(a�2x),�2)
From Stein’s lemma,

E[y ⋅ x]∝ p ⋅ a1 + (1 − p) ⋅ a2.

Not unique in a1 and a2

How can we ensure uniqueness?

Stein’s lemma 102

2nd order Stein’s lemma

E[f (x) ⋅ (xx� − I)������������������������������������S2(x)
] = E[∇(2)x f (x)] ∈ Rd×d .

Mixture of GLMs:

Py �x = p ⋅N (y �g(a�1x),�2) + (1 − p) ⋅N (y �g(a�2x),�2)
⇒ E[y ⋅ (xx� − I)]∝ 2p ⋅ a1a�1 + 2(1 − p) ⋅ a2a�2 .
Not unique!

How can we ensure uniqueness?

Stein’s lemma 103

3rd order Stein’s lemma

E[f (x) ⋅ S3(x)] = E[∇(3)x f (x)] ∈ Rd×d×d

Score transformation S3(x) = x ⊗ x ⊗ x −∑i∈[d] sym(x ⊗ e i ⊗ e i)
Mixture of GLMs:

Py �x = p ⋅N (y �g(a�1x),�2) + (1 − p) ⋅N (y �g(a�2x),�2)
⇒ E[y ⋅ S3(x)]∝ p ⋅ a1 ⊗ a1 ⊗ a1 + (1 − p) ⋅ a2 ⊗ a2 ⊗ a2.

Unique! (by Kruskal’s theorem)

Note: LHS estimated from samples!

MoE: Stein’s lemma

For MoE, p = p(x) = f (w�x) since
Py �x = f (w�x) ⋅N (y �g(a�1x),�2) + (1 − f (w�x)) ⋅N (y �g(a�2x),�2)
Can we use Stein’s lemma to learn a1 and a2?

Natural attempt:

E[y ⋅ S3(x)] = a1 ⊗ a1 ⊗ a1 +w ⊗ a1 ⊗w + . . . + a1 ⊗ a1 ⊗w + . . .
Not a super-symmetric tensor

Can we construct a super-symmetric tensor for MoE?

Key insight: Hermite polynomial transformation

Suppose g =linear and � = 0. Then
Py �x = f (w�x) ⋅ {y = a�1x} + (1 − f (w�x)) {y = a�1x}

⇒ E[y3 − 3y �x] = �
i∈{1,2}

f (w�i x)((a�i x)3 − 3(a�i x)), w2 = −w1

Now applying Stein’s lemma,

E[(y3 − 3y) ⋅ S3(x)] = E[∇3
xE[y3 − 3y �x]] = 3 �

i∈{1,2}‘
ai ⊗ ai ⊗ ai

How do cross terms like ai ⊗ ai ⊗w disappear?

Reason: E[H ′3(Z)] = E[H ′′3 (Z)] = E[H ′′′3 (Z)] = 0
H3(z) = z3 − 3z is third-Hermite polynomial

Does this work for � ≠ 0?

Linear experts: Hermite-like-polynomials

Suppose g = linear and � ≠ 0:
Py �x = f (w�x) ⋅N (y �a�1x ,�2) + (1 − f (w�x)) ⋅N (y �a�2x ,�2)

Super-symmetric tensor

T3 = E[(y3 − 3y(1 + �2)) ⋅ S3(x)] = 3(a1 ⊗ a1 ⊗ a1 + a2 ⊗ a2 ⊗ a2)
This very much needs special linear structure. What about other
non-linearities for g?

Generalization: Cubic polynomial transformations

For a wide class of non-linearities such as g=linear, sigmoid, ReLU,
etc.

T3 = E[(y3 + ↵y2 + �y) ⋅ S3(x)] = c(a1 ⊗ a1 ⊗ a1 + a2 ⊗ a2 ⊗ a2)
How do we choose ↵ and �?

� Solving a linear system
� Example: For sigmoid,

�0.2067 0.2066
0.0624 −0.0001� �↵�� = �−0.1755 − 0.6199�

2

−0.0936 �
Key idea: Acts like a ’Hermite’ like polynomial for general g and
cancels cross terms

Learning regressors: Spectral decomposition

Algorithm

Input: Samples (x i , yi)
Compute T̂3 = (1�n)∑i H3(yi) ⋅ S3(x i)
â1, â2 = Rank-2 decomposition on T3

Learning the gating

Recall

Py �x = f (w�x) ⋅N (y �a�1x ,�2) + (1 − f (w�x)) ⋅N (y �a�2x ,�2)
If we know a1 and a2, learning w is a classification problem!

Traditional methods:
� EM algorithm
� Gradient descent on log-likelihood

Theoretical contributions

Show global convergence for existing methods

Provide convergence rate

Finite sample complexity

First theoretical guarantees

Learning the gating parameters

Ŷ

Suppose spectral methods give âi with �âi − ai�2 ≤ �2"

For high SNR, i.e. � < �0, �0 is a dimension independent constant:

EM iterates converge geometrically to ŵ
Convergence rate is a dimension-independent constant depending on
� and �a1 − a2�
ŵ is "-close to the ground truth

Method 2: Optimization framework-loss function design

Loss function design: Paradigm

Figure: Standard Loss function architecture

Standard approaches Get stuck in local minima, no theoretical
analysis, and use single loss function

Modify the architecture to design a loss function g

� Building on [R.Ge, J.D. Lee, T. Ma ’18]

Figure: Modified Loss function architecture

Main contributions
Separate loss functions L4 and Llog to learn (a1,a2) and w

L4

4-order tensor loss

{â1, â2}

Llog

Log-likelihood loss

ŵ

Quartic Transform

Score function

Samples

x

y

Gradient descent on both L4 and Llog. What are they?

Tensor based loss function for regressors

For linear experts,

Py �x = f (w�x) ⋅N (y �a�1x ,�2) + (1 − f (w�x)) ⋅N (y �a�2x ,�2)
Stein’s lemma+ 4-Hermite polynomial implies

T4 = E[(y4 − 6y2(1 + �2)) ⋅ S4(x)] = 12(a⊗41 + a⊗42)
If â1 and â2 are parameters,

L4(â1, â2) ��
j≠k
T4(âj , âj , âk , âk) − µ �

j∈{1,2}
T4(âj , âj , âj , âj)

+ � �
j∈{1,2}

(�âj�2 − 1)2

Landscape of L4

Properties

No spurious local minima: All local minima are global

Global minima are ground truth (upto permutation and sign-flip)

All saddle points have negative curvature

SGD converges to approximate global minima

Why L4?

Summary

Algorithmic innovation: First provably consistent algorithms for MoE
in 25+ years

Loss function innovation: First SGD based algorithm on novel loss
functions with provably nice landscape properties

Sample complexity: First sample complexity results for MoE

Global convergence: Our algorithms work with global initializations

Open questions

Generalizing to non-Gaussian inputs
� Results: In the absence of gating, we have a loss function framework to
provably learn the regressors

� With gating?

Learning algorithms for time-series?

Learning algorithms and sample complexity for deep neural networks.

Thanks for support

Thank you!

