Information theory and Deep learning: An Emerging Interface

Presenting Team

Sreeram Kannan

Hyeji Kim

Sewoong Oh

University of Washington, Seattle
University of Illinois, Urbana Champaign

Pramod Viswanath (UIUC)

Success of Deep Learning

Speech

Image recognition

"construction worker in orange safety vest is working on road."

Video
https://www.youtube.com/ watch?v=9Yq67CjDqvw

Why does Deep Learning work?

Model deficit
\% Hard to model image, speech, language, video..

alphaGo => No model deficit
Algorithm deficit
\because Hard to find optimal algorithms for known model..

Example: Nanopore sequencing

Nearly a markov model
\therefore Yet deep learning does "better". Why?

Information theory and Deep learning

Information measures => Training objectives

Data has structure like hierarchy and invariance

Organization:This Tutorial

Part-1: Deep learning for information theory

1a. Deep learning for communication

> 1b. Deep learning for statistical inference

Part-2: Information theory for deep learning

2a. Theory for GAN

2b. Learning Gated
Neural Networks

Background on Neural Network Training

Sewoong Oh
University of Illinois at Urbana-Champaign

Classification

- Problem statement

Given labelled examples $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$, find a classifier f
that minimizes the loss \mathcal{L} of our choice

$$
\min _{f} \mathbb{E}_{X, Y}[\mathcal{L}(f(X), Y)]
$$

- As we access the joint distribution $P_{X, Y}$ through samples, we minimize the sample mean instead,

$$
\min _{f} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(f\left(X_{i}\right), Y_{i}\right)
$$

- To avoid overfitting to the training samples, we search over a restricted class of functions

$$
\min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(f\left(X_{i}\right), Y_{i}\right)
$$

- Neural networks: a parametric family with a graceful tradeoff between representation and generalization

Neural Network of depth d and weights $\left(W_{1}, \ldots, W_{d}\right)$

input layer X
output layer $f(X)$

$$
f(X)=\sigma\left(W_{d} \cdots \sigma\left(W_{2} \sigma\left(W_{1} X\right)\right) \cdots\right)
$$

Gradient computation is simple

- Choose the loss function (e.g. for binary classification)
- L2 loss

$$
\min _{W_{1}, \ldots, W_{d}} \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f\left(X_{i}\right)\right)^{2}
$$

- Cross entropy loss

$$
\min _{W_{1}, \ldots, W_{d}} \frac{1}{n} \sum_{i=1}^{n}-\left\{Y_{i} \log \left(f\left(X_{i}\right)\right)+\left(1-Y_{i}\right) \log \left(1-f\left(X_{i}\right)\right)\right\}
$$

- (variants of) gradient descent are used
- Efficient gradient computation via backpropagation

$$
f(X)=\sigma\left(W_{d} \cdots \sigma\left(W_{2} \sigma\left(W_{1} X\right)\right) \cdots\right)
$$

Sequential data / time series (e.g. translation)

- Feed-forward NN fails for sequential data that has
- causal structures and
- variable lengths
- Recurrent neural networks (RNN) have been proposed - captures the causal structure via memory

$$
\begin{aligned}
H_{t} & =\tanh \left(W X_{t}+U H_{t-1}\right) \\
Y_{t} & =V H_{t}
\end{aligned}
$$

Autoencoder for unsupervised learning

- (informal) Problem statement

$$
\begin{aligned}
& \text { Given unlabelled training data }\left\{X_{i}\right\}_{i=1}^{n} \text {, } \\
& \text { learn a useful representation } f\left(X_{i}\right)
\end{aligned}
$$

- What is useful?
- Dimensionality reduction (as in visualization or efficient processing)
- Compression (as in smaller file size)
- Representation learning for downstream tasks (as in word2vec)
- Premise of autoencoder:
- a good representation should recover X

Autoencoder

- An encoder and a decoder via neural networks

- minimize loss in recovering the original example

$$
\min _{W_{1}, \ldots, W_{d}} \frac{1}{n} \sum_{i=1}^{n}\left\|X_{i}-f\left(X_{i}\right)\right\|^{2}
$$

Neural network generative models

Part 1A. Application of deep learning to communications

Hyeji Kim

University of Illinois at Urbana-Champaign

Organization:This Tutorial

Part-1: Deep learning for information theory

> 1b. Deep learning for statistical inference

Part-2: Information theory for deep learning

2a. Theory for GAN

2b. Learning Gated Neural Networks

Communications

- Models are often well defined => No model deficit

Communications

- Models are often well defined => No model deficit
- Designing a robust encoder/decoder is critical

Communications

- Models are often well defined => No model deficit
- Designing a robust encoder/decoder is critical
- Challenge: space of algorithms very large

Channel coding

- Central problems in

IEEE Communications Society

Channel coding

- Central problems in

IEEE Communications Society

- Sporadic progress

Figure by Kai Niu

Channel coding

- Classical :

Additive White Gaussian Noise (AWGN) channels

Channel coding

- Classical :

Additive White Gaussian Noise (AWGN) channels

- Good codes under AWGN
- e.g. turbo, LDPC, polar codes

Open problems: type I

- Channel coding (encoder and decoder)
- Network settings

Open problems: type I

- Channel coding (encoder and decoder)
- Network settings

- Channels with feedback

Open problems: type I

- Channel coding (encoder and decoder)
- Network settings

- Channels with feedback

- Deletion/insertion channels

Open problems: type II

- Channel decoding
- Encoder is fixed (e.g. standardization)

Open problems: type II

- Channel decoding
- Encoder is fixed (e.g. standardization)
- Practical channels are not always AWGN
- Adaptive and robust decoder to non-AWGN channels?

Open problems: type II

- Channel decoding
- Encoder is fixed (e.g. standardization)
- Practical channels are not always AWGN
- Adaptive and robust decoder to non-AWGN channels?
- Reliable decoder for complicated channels

Central goal

Automate the search for codes and decoders via deep learning

Outline

- Part I. Discovering neural codes
- Example: channels with feedback
- Literature
- Open problems
- Part II. Discovering neural decoders
- Example: robust/adaptive neural decoding
- Literature
- Open problems

Outline

- Part I. Discovering neural codes
- Example: channels with feedback
- Literature
- Open problems
- Part II. Discovering neural decoders
- Example: robust/adaptive neural decoding
- Literature
- Open problems

Open problem 1

Learning a code

for channels with feedback

Feedback
H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath, "Discovering feedback codes via deep learning", 2018

AWGN channels with feedback

- AWGN channel from transmitter to receiver
- Output fed back to the transmitter

Literature

- Noiseless feedback
- Improved reliability
- BLER decays doubly exponentially in block length

Literature

- Noiseless feedback
- Improved reliability
- BLER decays doubly exponentially in block length
- Coding schemes
- Schalkwijk-Kailath, '66
- Posterior matching

Literature

- Noisy feedback
- Existing schemes sensitive to noise

Literature

- Noisy feedback
- Existing schemes sensitive to noise
- Negative results
- Linear codes very bad (Kim-Lapidoth-Weissman, '07)

Literature

- Noisy feedback
- Existing schemes sensitive to noise
- Negative results
- Linear codes very bad (Kim-Lapidoth-Weissman, '07)
- Widely open

Focus of our work

- AWGN channels with noisy feedback

Focus of our work

- AWGN channels with noisy feedback
- Challenge:

How to combine noisy feedback and message causally?

Focus of our work

- AWGN channels with noisy feedback
- Challenge:

How to combine noisy feedback and message causally?

- Model encoder and decoder as neural networks and train

Main results

- $100 x$ better reliability under feedback with machine precision

(Rate $1 / 3,50$ bits)

Main results

- Robust to noise in the feedback

(Rate $1 / 3,50$ bits, $\mathrm{SNR}=0 \mathrm{~dB}$)

Neural feedback code

Key: Architectural innovations, ideas from communications

Neural encoder

- Two-phase scheme
- e.g. maps information bits b_{1}, b_{2}, b_{3} to a length- 6 code

Phase I.

Neural encoder

- Two-phase scheme
- e.g. maps information bits b_{1}, b_{2}, b_{3} to a length- 6 code

Phase I.

Phase II.

Neural encoder

- Two-phase scheme
- e.g. maps information bits b_{1}, b_{2}, b_{3} to a length- 6 code

Phase I.
 Phase II.

Encoder receives feedback

$$
\begin{array}{lll}
\mathbf{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}
\end{array}
$$

Phase II: use feedback to generate parity bits

- Parity for b1

Codeword

Encoder receives feedback
b_{1}, y_{1}
$\begin{array}{lll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}\end{array}$

Phase II: use feedback to generate parity bits

Codeword

$\begin{array}{llll}\mathbf{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} & \mathrm{y}_{\mathrm{c} 1}\end{array}$

Phase II: use feedback to generate parity bits

- Another parity for b_{1} ?

Codeword

Encoder receives feedback
$\begin{array}{llll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} & \mathrm{y}_{\mathrm{c} 1}\end{array}$

Phase II: use feedback to generate parity bits

- Parity for b_{2} ?

Codeword

Encoder receives feedback
$\mathbf{b}_{1}, \mathbf{y}_{1} \quad \mathbf{b}_{2,}, \mathbf{y}_{2}$
$\begin{array}{llll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} & \mathrm{y}_{\mathrm{c} 1}\end{array}$

Phase II: use feedback to generate parity bits

- Parity for b_{2} and b_{1}

Codeword

Encoder receives feedback

$\begin{array}{llll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} & \mathrm{y}_{\mathrm{c} 1}\end{array}$

Phase II: use feedback to generate parity bits

- Parity for b_{3}, b_{2} and b_{1}

Codeword

Encoder receives feedback
$\mathbf{b}_{1}, \mathbf{y}_{1} \quad \mathbf{b}_{1}, \mathbf{y}_{1}, \mathbf{y}_{\mathbf{c 1}}, \mathbf{b}_{2}, \mathbf{y}_{2} \quad \mathbf{b}_{1}, \mathbf{y}_{1}, \mathbf{y}_{\mathbf{c 1}}, \mathbf{b}_{2}, \mathbf{y}_{2}, \mathbf{y}_{\mathbf{c}}, \mathbf{b}_{3}, \mathbf{y}_{3}$

$$
\begin{array}{llllll}
\mathbf{y}_{1} & \mathrm{y}_{2} & \mathrm{Y}_{3} & \mathrm{Y}_{\mathrm{c} 1} & \mathrm{y}_{\mathrm{c} 2} & \mathrm{y}_{\mathrm{c} 3}
\end{array}
$$

Recurrent Neural Network for parity generation

- Sequential mapping with memory

Codeword

Encoder receives feedback

$$
\begin{array}{llllll}
\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} & \mathrm{y}_{\mathrm{c} 1} & \mathrm{Y}_{\mathrm{c} 2} & \mathrm{Y}_{\mathrm{c}}
\end{array}
$$

Recurrent Neural Network for parity generation

- Sequential mapping with memory

$$
\begin{aligned}
& h_{i}=f\left(h_{i-1}, \text { Input }_{i}\right) \\
& \text { Output }_{i}=g\left(h_{i}\right)
\end{aligned}
$$

Codeword

Encoder receives feedback

$$
\begin{array}{llllll}
\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} & \mathrm{y}_{\mathrm{c} 1} & \mathrm{y}_{\mathrm{c} 2} & \mathrm{y}_{\mathrm{c} 3}
\end{array}
$$

Neural decoder

- Maps $\left(y_{1}, y_{2}, y_{3}, y_{c 1}, y_{c 2}, y_{c 3}\right)$ to $\hat{b_{1}}, \hat{b}_{2}, \hat{b}_{3}$ via bi-direct. RNN

Training

- Learn the encoder and decoder jointly

	noisy	estimated
message codeword	codeword	message

Training

- Auto-encoder training : (input,output) $=(\mathbf{b}, \mathbf{b})$

$$
\mathbf{b}=\left(b_{1}, b_{2}, \cdots, b_{K}\right)
$$

- Loss : binary cross entropy

$$
\mathcal{L}(\mathbf{b}, \hat{\mathbf{b}})=-\mathbf{b} \log \hat{\mathbf{b}}-(1-\mathbf{b}) \log (1-\hat{\mathbf{b}})
$$

Training

- Auto-encoder training : (input,output) $=(\mathbf{b}, \mathbf{b})$

$$
\mathbf{b}=\left(b_{1}, b_{2}, \cdots, b_{K}\right)
$$

- Loss : binary cross entropy

$$
\mathcal{L}(\mathbf{b}, \hat{\mathbf{b}})=-\mathbf{b} \log \hat{\mathbf{b}}-(1-\mathbf{b}) \log (1-\hat{\mathbf{b}})
$$

- Length of training examples :
- Block length K has to be long enough (100)

Intermediate results

High error in the last bits

High error in the last bits

Phase I.

Phase II.

$\begin{array}{lll}b_{1}, y_{1} & b_{2}, y_{2}, y_{c 1} & b_{3,}, y_{3}, y_{c 2}\end{array}$

Idea 1. Zero padding

Phase I.

b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	$\mathbf{0}$

Phase II.

$$
\begin{array}{llll}
b_{1}, y_{1} & b_{2,}, y_{2}, y_{c 1} & b_{3}, y_{3}, y_{c 2} & \mathbf{0}, \mathbf{y}_{4}, y_{c 3}
\end{array}
$$

Idea 2. Power allocation

Phase I.

$$
x W_{1} \quad x W_{2} \quad x W_{3} \quad x W_{4}
$$

b_{1}	b_{2}	b_{3}	$\mathbf{0}$

Phase II.

$$
\mathrm{b}_{1}, \mathrm{y}_{1} \quad \mathrm{~b}_{2,} \mathrm{y}_{2}, \mathrm{y}_{\mathrm{c} 1} \quad \mathrm{~b}_{3}, \mathrm{y}_{3}, \mathrm{y}_{\mathrm{c} 2} \quad \mathbf{0}, \mathbf{y}_{4}, \mathrm{y}_{\mathrm{c} 3}
$$

Results

- $100 x$ better reliability under feedback w. machine precision

(Rate $1 / 3,50$ bits)

Results

- 100x better reliability under feedback w. machine precision

(Rate $1 / 3,50$ bits)

Results

- Robust to noise in the feedback

(Rate $1 / 3,50$ bits, 0 dB)

Results

- Delayed feedback

(Rate $1 / 3,50$ bits, 0 dB)

Results

- Delayed and coded feedback

(Rate $1 / 3,50$ bits, 0 dB)

Interpretation of neural codes

- How does parity c_{3} depend on $b_{3}, y_{3}, b_{2}, y_{2}, y_{c 2}, b_{1}, y_{1}, y_{c 1}$

Codeword

Feedback
$\begin{array}{lll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}\end{array}$
yc1
yc2

Interpretation of neural codes

- How does parity \mathbf{c}_{3} depend on $\mathbf{b}_{3}, \mathbf{y}_{3}, \mathbf{b}_{2}, \mathbf{y}_{2}, \mathbf{y}_{\mathrm{c} 2}, \mathbf{b}_{1}, \mathbf{y}_{1}, \mathbf{y}_{\mathrm{c} 1}$
- For a rate $1 / 3$ code, $c_{k}=\left(c_{k, 1}, c_{k, 2}\right)$

Codeword

Feedback
$\begin{array}{lll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}\end{array}$
$\mathrm{Y}_{\mathrm{c} 1}$
Yc2

Interpretation of neural codes

- How does parity $c_{k}=\left(c_{k, 1}, c_{k, 2}\right)$ depend on b_{k} ?

Interpretation of neural codes

- How does parity $\mathrm{c}_{\mathrm{k}}=\left(\mathrm{c}_{\mathrm{k}, 1}, \mathrm{c}_{\mathrm{k}, 2}\right)$ depend on $\mathrm{y}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}$?

($\mathrm{y}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}$: noise added to b_{k} in Phase I)

Interpretation of neural codes

- How does parity $\mathrm{c}_{\mathrm{k}}=\left(\mathrm{c}_{\mathrm{k}, 1}, \mathrm{c}_{\mathrm{k}, 2}\right)$ depend on $\mathrm{y}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}$?

($\mathrm{y}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}$: noise added to b_{k} in Phase I)

Interpretation of neural codes

- How does parity $\mathrm{c}_{\mathrm{k}}=\left(\mathrm{c}_{\mathrm{k}, 1}, \mathrm{c}_{\mathrm{k}, 2}\right)$ depend on $\mathrm{y}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}$?

($\mathrm{y}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}$: noise added to b_{k} in Phase I)

Interpretation of neural codes

- How does parity $\mathbf{c}_{\mathrm{k}}=\left(\mathbf{c}_{\mathrm{k}, 1}, \mathrm{c}_{\mathrm{k}, 2}\right)$ depend on past bits/noise $\mathbf{b}_{k-1,} \mathbf{y}_{k-1}, \mathbf{y}_{\mathrm{c}, \mathrm{k}-1, \ldots,}, \mathbf{b}_{1}, \mathbf{y}_{1}, \mathbf{y}_{\mathrm{c} 1}$

Interpretation of neural codes

- How does parity $\mathbf{c}_{\mathrm{k}}=\left(\mathbf{c}_{\mathrm{k}, 1}, \mathrm{c}_{\mathrm{k}, 2}\right)$ depend on past bits/noise $\mathbf{b}_{k-1,} \mathbf{y}_{\mathrm{k}-1}, \mathbf{y}_{\mathrm{c}, \mathrm{k}-1, \ldots,}, \mathbf{b}_{1}, \mathbf{y}_{1}, \mathbf{y}_{\mathrm{c} 1}$
- e.g., $E\left[c_{k, 1} \mathbf{b}_{k-1}\right]=-0.24, E\left[c_{k, 1} \mathbf{b}_{k-2}\right]=-0.1, E\left[c_{k}, 1 b_{k-3}\right]=-0.05$

Interpretation of neural codes

- How does parity $\mathrm{c}_{\mathrm{k}}=\left(\mathrm{c}_{\mathrm{k}, 1}, \mathrm{c}_{\mathrm{k}, 2}\right)$ depend on past bits/noise $\mathbf{b}_{\mathrm{k}-1, \mathrm{y}_{\mathrm{k}-1}, \mathbf{y}_{\mathrm{c}, \mathrm{k}-1}, \ldots, \mathbf{b}_{1}, \mathrm{y}_{1}, \mathbf{y}_{\mathrm{c} 1}}$
- e.g., $E\left[c_{k, 1} \mathbf{b}_{k-1}\right]=-0.24, E\left[c_{k, 1} \mathbf{b}_{k-2}\right]=-0.1, E\left[c_{k, 1} \mathbf{b}_{k-3}\right]=-0.05$
- How encoder maps all past\¤t bits/feedback \rightarrow parity c_{k} is mysterious

Interpretation of neural codes

- Neural codes require 50 diverse and complicated hidden states (in RNN)

Interpretation of neural codes

- Open problem : propose an interpretable encoder

Interpretation of neural codes

- Open problem : propose an interpretable encoder
- Train a decoder via neural network
- Analyze the error performance

Generalization : block lengths

- BER remains the same for block lengths 50 \& 500

SNR

Improved error exponents

- Non-feedback scheme: BLER \downarrow as block length \uparrow

Improved error exponents

- Concatenated code : turbo + neural feedback code - BLER decays faster

Open problems : Longer block lengths

- Concatenation comes with a cost, "rate"

Open problems : Longer block lengths

- Concatenation comes with a cost, "rate"
- Neural code w. long range dependency?
- E.g. interleaver in turbo code

Open problems : Longer block lengths

- Concatenation comes with a cost, "rate"
- Neural code w. long range dependency?
- E.g. interleaver in turbo code
- We can put interleaver in feedback code. How to decode?

Open problems : Longer block lengths

- Concatenation comes with a cost, "rate"
- Neural code w. long range dependency?
- E.g. interleaver in turbo code
- We can put interleaver in feedback code. How to decode?

Challenge: training component dec. for belief propagation (noisy codewords, prior likelihood) -> posterior likelihood

Outline

- Part I. Discovering neural codes
- Example: channels with feedback
- Literature
- Open problems

Part II. Discovering neural decoders

- Example: robust/adaptive neural decoding
, Literature
- Open problems

Discovering neural codes

- AWGN
- Neural $(7,4)$ code: BER ~BER of $(7,4)$ Hamming code

T. O'Shea, J. Hoydis, "An Introduction to Deep Learning for the Physical Layer" 2017

Discovering neural codes

- AWGN

- Rate 1 (128 info. bits.) BER ~ 5dB better than QPSK

T. O'Shea, K. Karra, and T. C. Clancy, "Learning to communicate:

Channel auto-encoders, domain specific regularizers, and attention" 2016

Discovering neural codes

- No clean model: variation of AWGN channels

8 bits, 4 (complex) symbols under a wireless channel
S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, "Deep learning-based communication over the air", 2017

Aoudia and Jakob Hoydis, "End-to-End Learning of Communications Systems Without a Channel Model" 2018

Discovering neural codes

- Clean channel (erasure) / source is complicated (text)
- Joint source channel coding

N. Farsad, M. Kao, and A. Goldsmith, "Deep Learning for Joint SourceChannel Coding of Text" 2018

Discovering neural codes

- Clean channel (erasure) / source is complicated (text)
- Joint source channel coding
- Improved reliability, evaluated by human

N. Farsad, M. Kao, and A. Goldsmith, "Deep Learning for Joint SourceChannel Coding of Text" 2018

Discovering neural codes

- Coded computation
- J. Kosaian, K.V. Rashmi, and S. Venkataraman, "Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation", 2018
- Orthogonal frequency-division multiplexing (OFDM)
- A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, "OFDMAutoencoder for end-to-end learning of communications systems", 2018
- M. Kim, W. Lee, and D. H. Cho, "A novel PAPR reduction scheme for OFDM system based on deep learning", 2018
- Multiple-Input Multiple-Output (MIMO)
- T. J. O’Shea, T. Erpek, and T. C. Clancy, "Physical layer deep learning of encodings for the MIMO fading channel", 2017

Outline

- Part I. Discovering neural codes
- Example: channels with feedback
- Literature
- Open problems

Part II. Discovering neural decoders

- Example: robust/adaptive neural decoding
, Literature
- Open problems

Open problems

- Canonical and benchmark : AWGN

message	received codeword	estimated message

Gaussian noise

Open problems

- Canonical and benchmark : AWGN
- Challenge 1. neural code that has a long range memory
- Challenge 2. jointly training Enc./Dec.

Open problems

- Channels with no good codes: deletion channel
- Practical (e.g. lack of synchronization, DNA sequencing)

Open problems

- Channels with no good codes: deletion channel
- Practical (e.g. lack of synchronization, DNA sequencing)
- Optimal codes known only if deletion probability v. small
- No practical code exists; capacity unknown in general

Open problems

- Channels with no good codes: deletion channel
- Practical (e.g. lack of synchronization, DNA sequencing)
- Optimal codes known only if deletion probability v. small
- No practical code exists; capacity unknown in general
- Many network settings
- Relay, interference, Coordinated Multipoint (CoMP)

Outline

- Part I. Discovering neural codes
, Example: channels with feedback
, Literature
- Open problems
- Part II. Discovering neural decoders
- Example: robust/adaptive neural decoding
- Literature
- Open problems

Open problem 2

Learning a decoder

under practical channels

H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath, "Communication algorithms via deep learning" 2018

Sequential codes

- Convolutional codes, turbo codes
- Practical
- 3G/4G mobile communications (e.g., in UMTS and LTE)
- (Deep space) satellite communications
- Achieve performance close to fundamental limit
- Have a natural recurrent structure aligned with RNN

Sequential codes under AWGN

Sequential codes under AWGN

- Optimal decoders under AWGN
- e.g. Viterbi, BCJR decoder for convolutional codes

Non-AWGN channel

Bursty noise

- High-power noise is added occasionally

Bursty noise

- High-power noise is added occasionally

- Heuristic decoders are used

Bursty noise

- High-power noise is added occasionally

- Heuristic decoders are used
- Train a neural network to decode

Neural decoder

- Supervised training with (noisy codeword \mathbf{y}, message \mathbf{b})

Neural decoder under AWGN

- Convolutional codes
- Model decoder as a Recurrent Neural Network (RNN)

Training

- Supervised training with (noisy codeword \mathbf{y}, message b)
- Loss $\mathrm{E}\left[(\mathbf{b}-\hat{\mathbf{b}})^{2}\right]$

Choice of training examples

- Training examples (\mathbf{y}, \mathbf{b}) :
- Length of message bits $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$
- SNR of the noisy codeword \mathbf{y}

Choice of training examples

- Train at a block length 100 , fixed SNR (0dB)

Choice of training examples

- Train at a block length 100, fixed SNR (0dB)
- Optimal performance for every block lengths, across SNR

Results

- Neural decoder learns decoding convolutional codes

Train: block length $=100, \mathrm{SNR}=0 \mathrm{~dB}$ Test: block length $=10 \mathrm{~K}$

Results

- Neural decoder learns decoding convolutional codes

Train: block length $=100$, SNR=0dB Test: block length $=100$

Choice of training examples

- Training with noisy codewords at test SNR?

Choice of training examples

- Empirically find best training SNR for different code rates

Choice of training examples

- Hardest training examples

Adversarial training

- Idea of hardest training examples
- Training with noisy examples
- Applied to problems s.t. training examples can be chosen

Decoding turbo codes under AWGN

- Decoding of turbo codes:
belief propagation of BCJR component decoders
(noisy codeword, prior likelihood) —> posterior likelihood

Decoding turbo codes under AWGN

- Decoding of turbo codes:
belief propagation of BCJR component decoders
(noisy codeword, prior likelihood) —> posterior likelihood
- Learning neural turbo decoder:
- Train a neural component decoder with BCJR labels
- Stack component decoders and train the BP decoder

Decoding turbo codes under AWGN

- Neural decoder performance ~ turbo codes

SNR
(block length = 1000)

Robustness: Decoding turbo codes under bursty noise

- Neural decoder is more reliable under bursty noise

Adaptivity: Decoding turbo codes under bursty noise

- Neural decoder performs better than heuristic decoders

Outline

- Part I. Discovering neural codes
- Example: channels with feedback
, Literature
- Open problems
- Part II. Discovering neural decoders
- Example: robust/adaptive neural decoding
- Literature
- Open problems

Neural decoders

- Decoding linear codes
- Generalized BP decoder

Eliya Nachmani, Yair Be'ery, David Burshtein,
"Learning to decode linear codes using deep learning", 2016
Eliya Nachmani, Yaron Bachar, Elad Marciano, David Burshtein, Yair Be'ery, "Near Maximum Likelihood Decoding with Deep Learning", 2018

Neural decoders

- Decoding polar codes
- Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, "On deep learning-based channel decoding", 2017
- Decoding under molecular channels
- Nariman Farsad, Andrea Goldsmith," Neural Network Detection of Data Sequences in Communication Systems", 2018

Outline

- Part I. Discovering neural codes
- Example: channels with feedback
- Literature
- Open problems
- Part II. Discovering neural decoders
- Example: robust/adaptive neural decoding
- Literature
- Open problems

Open problems

- Decoding under
- channels with memory, deletion channels
- practical channels with intractable model

Open problems

- Decoding under
- channels with memory, deletion channels
- practical channels with intractable model
- Adaptive and robust decoders
- fast adaptation to varying channels

Summary

- Human ingenuity has been the driving force behind designing codes for past century
- We provide an alternative approach - training neural networks - and demonstrate its powerfulness with feedback code design
- It has great potential to provide new solutions to numerous challenges in communications

Summary

- It is critical to bring intuitions and knowledge from communications and information theory
- Along the way, we bring new ideas and intuition to deep learning methodology
- By interpreting neural communication algorithms, we gain new ideas and insights in code design

Collaborators

Yihan Jiang

Ranvir Rana

Sreeram Kannan

Sewoong Oh

Pramod Viswanath

Deep Learning
 for Statistical Inference

Organization:This Tutorial

Part-1: Deep learning for information theory

Part-2: Information theory for deep learning

2a. Theory for GAN

2b. Learning Gated Neural Networks

Collaborators

Beyond Coding

Two successes of Deep
Learning
\% Strong classifiers
\% Powerful Generative Models

Beyond Coding

Two successes of Deep
Learning

* Strong classifiers
\% Powerful Generative Models

Statistical Inference Applications
\because Conditional Independence Testing
\therefore Estimating Information Measures

־Compressed Sensing

* Community Detection

Classifiers

\because Deep NN and boosted random forests achieve state-of-the-art performance
\therefore Works very well even in practice when X is high dimensional.
: Exploits generic inductive bias:
\% Invariance
\% Hierarchical Structure
\therefore Symmetry

Classifiers

\because Deep NN and boosted random forests achieve state-of-the-art performance

* Works very well even in practice when X is high dimensional.
\because Exploits generic inductive bias:
\% Invariance
\& Hierarchical Structure
\& Symmetry

Classifiers

\because Deep NN and boosted random forests achieve state-of-the-art performance

* Works very well even in practice when X is high dimensional.
\therefore Exploits generic inductive bias:
\% Invariance
\& Hierarchical Structure
\therefore Symmetry

Theoretical guarantees lag severely behind practice!

Generative Models

Generative Models

\therefore Trained Real Samples of x
\% Can generate any number of new samples

Generative Models

$\%$ Trained Real Samples of x
\% Can generate any number of new samples

Statistical Inference Applications

\% Conditional Independence Testing
\because Estimating Information Measures

* Compressed Sensing
* Community Detection

Conditional Independence Testing

Estimating Total Variation Distance

P

Q

Estimating Total Variation Distance

Estimating Total Variation Distance

Estimating Total Variation Distance

P and Q can be arbitrary.
Search beyond Traditional Density Estimation Methods

Total Variation Estimation : Prior Art

$\%$ Lots of work in information theory on D_{TV} testing
\because Based on closeness testing between P and Q
\because Sample complexity $=\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$, where $\mathrm{n}=$ alphabet size
\therefore Not much is known in the real-valued case

* Chan et al, Optimal Algorithms for testing * Sriperumbudur et al, Kernel choice and classifiability for closeness of discrete distributions, SODA 2014 RKHS embeddings of probability distributions, NIPS 2009

Total Variation Estimation : Prior Art

$\%$ Lots of work in information theory on D_{TV} testing
$\%$ Based on closeness testing between P and Q
\because Sample complexity $=O\left(n^{2 / 3}\right)$, where $n=$ alphabet size
Curse of dimensionality
\% Not much is known in the real-valued case

* Chan et al, Optimal Algorithms for testing * Sriperumbudur et al, Kernel choice and classifiability for closeness of discrete distributions, SODA 2014 RKHS embeddings of probability distributions, NIPS 2009

Total Variation Estimation : Prior Art

$\%$ Lots of work in information theory on D_{TV} testing
$\%$ Based on closeness testing between P and Q
\because Sample complexity $=O\left(n^{2 / 3}\right)$, where $n=$ alphabet size

Curse of
dimensionality
\% Not much is known in the real-valued case

Leverage classifiers which exploit generic inductive bias!

* Chan et al, Optimal Algorithms for testing
closeness of discrete distributions, SODA 2014

Distance Estimation via Classification

Distance Estimation via Classification

Distance Estimation via Classification

Distance Estimation via Classification

n samples $\sim P$
(Label 0)

Deep NN, Boosted Trees etc.

Classification Error of Optimal Classifier

$$
=\frac{1}{2}-\frac{1}{2} D_{\mathrm{TV}}(P, Q)
$$

Independence Testing

n samples $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ RKHS embeddings of probability distributions, NIPS 2009

Independence Testing

n samples $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}\left\{\begin{array}{l}\mathcal{H}_{0}: X \Perp Y\left(\mathbf{P}^{C I}\right) \\ \mathcal{H}_{1}: X \not \Perp Y(\mathbf{P})\end{array}\right.$

Independence Testing

n samples $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}\left\{\begin{array}{l}\mathcal{H}_{0}: X \Perp Y\left(\mathbf{P}^{C I}\right) \\ \mathcal{H}_{1}: X \not \Perp Y(\mathbf{P})\end{array}\right.$

Classify

Independence Testing

Independence Testing

Independence Testing

n samples $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ Split

Equally

Independence Testing

n samples $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$

Independence Testing

n samples $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$

Label 0

Independence Testing

n samples $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$

Label 0
Split

Independence Testing

Independence Testing

Independence Testing

Conditional Independence Testing

n samples $\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\ \text { vs } \\ \mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})\end{array}\right.$

Conditional Independence Testing

n samples $\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\ \text { vs } \\ \mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})\end{array}\right.$

Classify

Conditional Independence Testing

$$
\text { n samples }\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}
\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\
\text { vs } \\
\mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})
\end{array}\right.
$$

How to get $\mathbf{P}^{C I}(p(z) p(x \mid z) p(y \mid z)$?

Classify

Conditional Independence Testing

$$
\text { n samples }\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}
\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\
\text { vs } \\
\mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})
\end{array}\right.
$$

Given samples $\sim p(x, z)$ How to emulate $p(y \mid z)$?

Classify

Conditional Independence Testing

$$
\text { n samples }\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}
\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\
\text { vs } \\
\mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})
\end{array}\right.
$$

Emulate $p(y \mid z)$ as $q(y \mid z)$

* KNN Based

Methods

* Kernel

Methods

Classify

Conditional Independence Testing

$$
\text { n samples }\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}
\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\
\text { vs } \\
\mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})
\end{array}\right.
$$

Emulate $p(y \mid z)$ as $q(y \mid z)$

* KNN Based Methods
* Kernel

Methods

$$
\tilde{\mathbf{P}}^{C I}(p(z) p(x \mid z) q(y \mid z))
$$

Classify

Conditional Independence Testing

$$
\text { n samples }\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}
\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\
\text { vs } \\
\mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})
\end{array}\right.
$$

* KCIT] Gretton et al, Kernel-based conditional independence lest and application in causal discovery, NIPS 2008
* [KCIPT] Doran et al, A permutation-based kernel conditional independence test, UAI 2014
* [CCIT] Sen et al, Model-Powered Conditional Independence Test, NIPS 2017
* [RCIT] Strobl et al, Approximate Kernel-based Conditional Independence Tests for Fast Non-Parametric Causal Discovery, arXiv,

Conditional Independence Testing

$$
\text { n samples }\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{n}\left\{\begin{array}{c}
\mathcal{H}_{0}: X \Perp Y \mid Z\left(\mathbf{P}^{C I}\right) \\
\text { vs } \\
\mathcal{H}_{1}: X \not \Perp Y \mid Z(\mathbf{P})
\end{array}\right.
$$

Emula
Limited to low-dimensional Z.
$\because \mathrm{KNN}$
Meth In practice, Z is often high dimensional.
\because Kern (Eg. In graphical model, conditioning set can be Methentire graph.)

How loose can the estimate be for $\tilde{\mathbf{P}}^{C I}$ or $q(y \mid z)$?

How loose can the estimate be for $\tilde{\mathbf{P}}^{C I}$ or $q(y \mid z)$?

Novel Bias Cancellation Method in Mimic-and-Classify works

As long as the density function $q(\mathbf{y} \mid \mathbf{z})>0$ whenever $p(\mathbf{y}, \mathbf{z})>0$.

How loose can the estimate be for $\tilde{\mathbf{P}}^{C I}$ or $q(y \mid z)$?

Novel Bias Cancellation Method in Mimic-and-Classify works

As long as the density function $q(\mathbf{y} \mid \mathbf{z})>0$ whenever $p(\mathbf{y}, \mathbf{z})>0$.

Mimic Functions : GANs, Regressors etc.

Mimic and Classify

Mimic
Step

Classify
Step

Mimic and Classify

Mimic
Step

Classify
Step

Mimic and Classify

Mimic
Step

Classify
Step

Mimic and Classify

Mimic

Step

Dataset D

Dataset D^{\prime}

Classify
Step

Mimic and Classify

Mimic and Classify

Classification Error : $\mathcal{E}_{x y z}$

Mimic and Classify

Classification Error : $\mathcal{E}_{x y z}$

Mimic and Classify

Classification Error : $\mathcal{E}_{x y z}$
Classification Error : $\mathcal{E}_{y z}$

Mimic and Classify

Classification Error : $\mathcal{E}_{x y z}$
Classification Error : $\mathcal{E}_{y z}$
if $\left|\mathcal{E}_{x y z}-\mathcal{E}_{y z}\right|>\tau$, Return \mathcal{H}_{1}
else Return \mathcal{H}_{0}

Mimic and Classify

Mimic
Step

As long as the density function $q(\mathbf{y} \mid \mathbf{z})>0$ whenever $p(\mathbf{y}, \mathbf{z})>0$.

Classify
Step

Mimic and Classify

Mimic
Step

As long as the density function $q(\mathbf{y} \mid \mathbf{z})>0$ whenever $p(\mathbf{y}, \mathbf{z})>0$.

Classify Step

$$
\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|=0 \leftrightarrow \mathcal{H}_{0} \text { is true }
$$

$$
\begin{aligned}
& 2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right| \\
& =D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
\end{aligned}
$$

*The errors here are the corresponding optimal Bayes classifier errors.

Mimic and Classify (Theory)

$$
\begin{aligned}
& 2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right| \\
& =D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
\end{aligned}
$$

Mimic and Classify (Theory)

$$
\begin{aligned}
& 2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right| \\
& =D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z})) \\
& \geq \int_{\mathbf{y}, \mathbf{z}} \min (p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}))(1-\epsilon(\mathbf{y}, \mathbf{z})) d(\mathbf{y}, \mathbf{z})
\end{aligned}
$$

Mimic and Classify (Theory)

$$
2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|
$$

$$
=D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
$$

$$
\geq \int_{\mathbf{y}, \mathbf{z}} \min (p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}))(1-\epsilon(\mathbf{y}, \mathbf{z})) d(\mathbf{y}, \mathbf{z})
$$

Where: $\epsilon(\mathbf{y}, \mathbf{z})=\max _{\pi \in \Pi\left(p(\mathbf{x} \mid \mathbf{z}), p\left(\mathbf{x}^{\prime} \mid \mathbf{y}, \mathbf{z}\right)\right)} \mathbb{E}_{\pi}\left[\mathbf{1}_{\left\{\mathbf{x}=\mathbf{x}^{\prime}\right\}} \mid \mathbf{y}, \mathbf{z}\right]$
Conditional dependence $\leftrightarrow \epsilon(y, z)<1$ with non-zero probability

Mimic and Classify (Theory)

$$
\begin{aligned}
& 2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right| \\
& =D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z})) \\
& \geq \int_{\mathbf{y}, \mathbf{z}} \min (p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}))(1-\epsilon(\mathbf{y}, \mathbf{z})) d(\mathbf{y}, \mathbf{z})
\end{aligned}
$$

Where: $\epsilon(\mathbf{y}, \mathbf{z})=\max _{\pi \in \Pi\left(p(\mathbf{x} \mid \mathbf{z}), p\left(\mathbf{x}^{\prime} \mid \mathbf{y}, \mathbf{z}\right)\right)} \mathbb{E}_{\pi}\left[\mathbf{1}_{\left\{\mathbf{x}=\mathbf{x}^{\prime}\right\}} \mid \mathbf{y}, \mathbf{z}\right]$
Conditional dependence $\leftrightarrow \epsilon(y, z)<1$ with non-zero probability

Theorem 1
As long as the density function $q(\mathbf{y} \mid \mathbf{z})>0$ whenever $p(\mathbf{y}, \mathbf{z})>0$, then conditional dependence implies that $2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|>0$

Mimic and Classify (Theory)

Conditional independence implies $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$.

$$
D_{\mathrm{TV}}(p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))=D_{\mathrm{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
$$

Mimic and Classify (Theory)

Conditional independence implies $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$.
$D_{\mathrm{TV}}(p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))=D_{\mathrm{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))$
$2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|$
$=D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))$

Mimic and Classify (Theory)

Conditional independence implies $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$.

$$
D_{\mathrm{TV}}(p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))=D_{\mathrm{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
$$

$$
2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|
$$

$$
=D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
$$

$$
=D_{\operatorname{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
$$

Mimic and Classify (Theory)

Conditional independence implies $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$.

$$
D_{\mathrm{TV}}(p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))=D_{\mathrm{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
$$

$$
2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|
$$

$$
=D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
$$

$$
\begin{aligned}
& =D_{\mathrm{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z})) \\
& =D_{\mathrm{TV}}(p(\mathbf{x}, \mathbf{y}, \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
\end{aligned}
$$

Mimic and Classify (Theory)

Conditional independence implies $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$.
$D_{\mathrm{TV}}(p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))=D_{\mathrm{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))$

$$
\begin{aligned}
& 2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right| \\
&=D_{\mathrm{TV}}(p(\mathbf{z}, \mathbf{x}, \mathbf{y}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}) p(\mathbf{x} \mid \mathbf{z}))-D_{\mathrm{TV}}(p(\mathbf{y}, \mathbf{z}), p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z})) \\
&=D_{\mathrm{TV}}(p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) p(\mathbf{y} \mid \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z})) \\
&=D_{\mathrm{TV}}(p(\mathbf{x}, \mathbf{y}, \mathbf{z}), p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) q(\mathbf{y} \mid \mathbf{z}))
\end{aligned}
$$

Theorem 2
Conditional independence implies that $2\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|=0$

Mimic and Classify (Theory)

Combining Theorem 1 and Theorem 2

Theorem 3
As long as the density function $q(y \mid z)>0$ when $p(y, z)>0$
$\left|\mathbf{E}_{D}\left[\mathcal{E}_{x y z}\right]-\mathbf{E}_{D}\left[\mathcal{E}_{y z}\right]\right|=0 \leftrightarrow \mathcal{H}_{0}$ is true

Deep Learning based MIMIC Functions

MIMIFY - CGAN

Deep Learning based MIMIC Functions

MIMIFY - CGAN

Deep Learning based MIMIC Functions

MIMIFY - CGAN

MIMIFY - REG
Regress to estimate $r(z)=\mathbf{E}[Y \mid Z=z]$

Deep Learning based MIMIC Functions

MIMIFY - CGAN

MIMIFY - REG
Regress to estimate $r(z)=\mathbf{E}[Y \mid Z=z]$
$\hat{y}=r(z)+$ Gaussian Noise $\sim q(y \mid z)$

Deep Learning based MIMIC Functions

```
MIMIFY - CGAN
```


MIMIFY - REG

Regress to estimate $r(z)=\mathbf{E}[Y \mid Z=z]$
$\hat{y}=r(z)+$ Gaussian Noise $\sim q(y \mid z)$ (or, laplacian noise)

Experiments

Post-Nonlinear Noise Synthetic Experiments: AUROC

Experiments

Flow-cytometry Data

Experiments

Gene Regulatory Network Inference (DREAM)

Estimating Information Measures

Estimating Kullback-Leibler Distance

n samples \downarrow

Q

n samples
\downarrow

Estimate $D_{K L}(P \| Q)$?

Estimating Kullback-Leibler Distance

P and Q can be arbitrary.
Search beyond Traditional Density Estimation Methods

Neural Network Approximation

Neural Network Approximation

Donsker-Varadhan Dual Representation: $D_{K L}(P \| Q)=\sup _{T} \mathbf{E}_{P}[T]-\log \left(\mathbf{E}_{Q}\left[e^{T}\right]\right)$

Neural Network Approximation

Donsker-Varadhan Dual Representation: $D_{K L}(P \| Q)=\sup _{T} \mathbf{E}_{P}[T]-\log \left(\mathbf{E}_{Q}\left[e^{T}\right]\right)$

- $T \leftarrow$ Rich NN class
- $\mathbf{E} \leftarrow$ Sample Averages
- $\sup _{T} \leftarrow$ Obtained via Stochastic Gradient search

Mutual Information Neural Estimation (MINE)

Donsker-Varadhan Dual Representation: $D_{K L}(P \| Q)=\sup _{T} \mathbf{E}_{P}[T]-\log \left(\mathbf{E}_{Q}\left[e^{T}\right]\right)$

$I(X ; Y)=D_{K L}\left(\mathbf{P}_{X Y} \| \mathbf{P}_{X} \mathbf{P}_{Y}\right)$

Mutual Information Neural Estimation (MINE)

n samples $\sim P$

n samples $\sim \mathrm{Q}$

Donsker-Varadhan Dual Representation: $D_{K L}(P \| Q)=\sup _{T} \mathbf{E}_{P}[T]-\log \left(\mathbf{E}_{Q}\left[e^{T}\right]\right)$

$I(X ; Y)=D_{K L}\left(\mathbf{P}_{X Y} \| \mathbf{P}_{X} \mathbf{P}_{Y}\right)$

Generated via
Permutation

Compressed Sensing

Generative Model and Linear Measurements

$\mathrm{Z} \longrightarrow$
Low k-dimensional
Latent Space

Generative Model and Linear Measurements

Generative Model and Linear Measurements

Generative Model and Linear Measurements

Given y : Guess x?

Generative Model and Linear Measurements

How large is m (\#measurements)?

Compressed Sensing

High n-dimensional
Generated Data

Z
Low k-dimensional Latent Space

Measurement
 Matrix
 A
 \uparrow
 $y=A x+$ Noise m-dimensional observations

Noise
$A=$ scaled Gaussian Random Matrix, $G=d$-layer NN then, $m=O(k d \log n)$ suffice.
*Yeh et al, Semantic Image Inpainting with Deep
Generative Models, CVPR 2017
*Bora et al, AmbientGAN: Generative models from lossy measurements, ICLR 2018

Open Problems

\% Statistical property testing and estimation problems

* Beyond DTV: Distance measure estimation using classifier.
\because Time-series data (Directed information estimation and testing).
\% Information bottleneck and deep learning
\because Relationship hotly disputed. Need strong MI estimators!
\because Conditional mutual information estimation
\% Plays vital role in controlling bias or privacy
\% I(Salary ; Race \| Performance) small
* Rely on GAN based generative models
\because Does not work well in small sample regime
$\%$ Need for Unified framework

Part 2A.
 Applications of (Information) Theory to Generative Adversarial Networks

Sewoong Oh

University of Illinois at Urbana-Champaign

Organization:This Tutorial

Part-1: Deep learning for information theory

1a. Deep learning for communication

1b. Deep learning for statistical inference

Part-2: Information theory for deep learning

2a. Theory for GAN

2b. Learning Gated Neural Networks

Neural network generative models

- How do we model the distribution of complex data in high-dimensions?

- Parametric models (e.g. mixture of Gaussians) fail on complex data
- Non-parametric models (e.g. KDE, Nearest Neighbor) fail in high dimensions

Neural network generative models

$G(Z) \in \mathbb{R}^{1024 \times 1024 \times 3}$

- A generative model takes a random vector Z and produces samples $G(Z)$
- The neural network weights can be trained by gradient descent

Generative Adversarial Network

["Generative adversarial nets",Goodfellow et al., 2014]

Generative Adversarial Network

- GAN loss choices
- Cross-Entropy loss

$$
\begin{gathered}
\min _{G} \max _{D} \mathbb{E}_{P_{\text {real }}}[\log (D(X))]+\mathbb{E}_{Q_{G}}[\log (1-D(X))] \\
D^{*}(X)=\frac{P_{\text {real }}(X)}{P_{\text {real }}(X)+Q_{G}(X)} \\
\min _{G} 2 D_{\mathrm{JS}}\left(P_{\text {real }} \| Q_{G}\right)-\log 4
\end{gathered}
$$

$$
D_{\mathrm{JS}}(P \| Q)=\frac{1}{2} D_{\mathrm{KL}}\left(P \| \frac{P+Q}{2}\right)+\frac{1}{2} D_{\mathrm{KL}}\left(Q \| \frac{P+Q}{2}\right)
$$

Generative Adversarial Network

- GAN loss choices
- 0-1 loss

$$
\begin{gathered}
\min _{G} \max _{D} \mathbb{E}_{P_{\text {real }}}[D(X)]-\mathbb{E}_{Q_{G}}[D(X)] \\
D^{*}(X)= \\
\min _{G} d_{\mathrm{TV}}\left(P_{\text {real }}(X)>Q_{G}(X)\right\} \\
\text { real } \left., Q_{G}\right)
\end{gathered}
$$

- Other popular choices: f-divergence, Wasserstein distance

Mode Collapse is a major challenge in GAN

- Mode Collapse collectively refers to the lack of diversity in the generated samples

target distribution mixture of 25 Gaussians in 2D

Modes
(Max 25)
GAN $\quad 17.3$

Mode Collapse is a major challenge in GAN

- Mode Collapse collectively refers to the lack of diversity in the generated samples

target distribution Stacked MNIST

Modes
(Max 1000) DCGAN

Mode Collapse is prevalent in real applications

- Heuristics tailored for each task (or dataset) don't generalize to new tasks
z (noise)

["Conditional image synthesis with auxiliary classifier GANs", Odena,Olah,Shlens, 2016] ["GANs with projection discriminator", Miyato,Koyama, 2018]

Mode Collapse is prevalent in real applications

- Heuristics provide varying levels of improvement, but Mode Collapse is a fundamental challenge
- "A man in a orange jacket with sunglasses and a hat ski down a hill."

(Detection) theoretical understanding of Mode Collapse
- Through the lens of binary hypothesis testing, we provide new formal definition of Mode Collapse

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon .
$$

- The 2-D region representation
- allows formal comparison of strengths of Mode Collapse
- read off all divergences
- intuition on how to understand adversarial training
- new architecture for GAN
- new proof technique to prove our main results
["PacGAN: the power oft samples in generative adversarial networks",Lin,Khetan,Oh,Fanti, 2017]

Mode Collapse region

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon
$$

Mode Collapse region

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon
$$

Mode Collapse region

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon
$$

Mode Collapse region

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon
$$

Mode Collapse region

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon
$$

Mode Collapse region

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon
$$

Mode Collapse region

Definition [mode collapse region]

We say a pair (P, Q) of a target distribution P and a generator distribution Q has (ε, δ)-mode collapse if there exists a set S such that

$$
P(S) \geq \delta, \quad \text { and } \quad Q(S) \leq \varepsilon
$$

(Detection) theoretical understanding of Mode Collapse

Mode Collapse region

- The 2-D region representation
- allows formal comparison of strengths of Mode Collapse
- Read off all divergences

Alternate view of GAN training via Mode Collapse region

corresponding
Mode Collapse region

GAN training via Mode Collapse region

corresponding
Mode Collapse region

GAN training via Mode Collapse region

corresponding
Mode Collapse region

GAN training via Mode Collapse region

corresponding
Mode Collapse region

Main challenge

- Varying degrees of Mode Collapses are indistinguishable from the standard choices of losses

- Goal: how do we design new (family of) losses that naturally penalizes Mode Collapse?

Lifting the loss to the product distributions

- Mathematical intuitions from
- Comparisons of experiments [Blackwell1953]
- (reverse) Data-processing inequality
- Differential Privacy [KairouzOhViswanath2017]

$$
D_{\mathrm{TV}}\left(P^{m}, Q^{m}\right) \text { naturally penalizes mode collapse }
$$

PacGAN: principled approach to Mode Collapse

- Discriminator needs to sample from the product distribution

Benchmark test

Mixture of Gaussians

GAN

Modes
(Max 25)

	Modes $($ Max 25 $)$
GAN	17.3
PacGAN2	23.8
PacGAN3	24.6
PacGAN4	24.8

PacGAN2

Benchmark tests

Stacked MNIST

DCGAN

PacDCGAN2

Modes (Max 1000)

DCGAN	99.0
ALI	16.0
Unrolled GAN	48.7
VEEGAN	150.0
PacDCGAN2	1000.0
PacDCGAN3	1000.0
PacDCGAN4	1000.0

["VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning",
Srivastava,Valkov,Russell,Gutmann,Sutton, 2017]

We can "measure" Mode Collapse via lifting

(reverse) data processing inequality [KairouzOhViswanath17]
If $\mathcal{R}\left(P, Q_{1}\right) \supseteq \mathcal{R}\left(P, Q_{2}\right)$, then $\mathcal{R}\left(P^{m}, Q_{1}^{m}\right) \supseteq \mathcal{R}\left(P^{m}, Q_{2}^{m}\right)$

(reverse) data-processing inequality

Lifting naturally penalizes Mode Collapse

Analysis of lifted TV

- Evolution of TV distances

Analysis of lifted TV with Mode Collapse

$$
\begin{array}{ll}
\max _{P, Q} / \min _{P, Q} & d_{\mathrm{TV}}\left(P^{m}, Q^{m}\right) \\
\text { subject to } & d_{\mathrm{TV}}(P, Q)=\tau \\
& \text { with }\left(\varepsilon_{0}, \delta_{0}\right) \text {-mode collapse }
\end{array}
$$

Analysis of lifted TV with Mode Collapse

$$
\begin{array}{cc}
\max _{P, Q} / \min _{P, Q} & d_{\mathrm{TV}}\left(P^{m}, Q^{m}\right) \\
\text { subject to } & d_{\mathrm{TV}}(P, Q)=\tau \\
& \text { without }\left(\varepsilon_{0}, \delta_{0}\right) \text {-mode collapse }
\end{array}
$$

Analysis of lifted TV with Mode Collapse

Remaining challenges in Mode Collapse

- There has been extensive effort on designing new losses for GANs, but empirically compared
- We give a formal comparisons of loss function

$$
d_{\mathrm{TV}}(P, Q) \prec_{\text {mode }} d_{\mathrm{TV}}\left(P^{m}, Q^{m}\right)
$$

- Can we formally compare other popular loss functions?

\[

\]

Generalization [Theorem4.1,BCST18]

Suppose D_{w} and G_{θ} are Lipschitz in $w \in W \subseteq \mathbb{R}^{p}$ and $\theta \in \Theta \subseteq \mathbb{R}^{q}$

$$
\begin{gathered}
\hat{\theta} \in \arg \min _{\theta \in \Theta} \max _{w \in W} \frac{1}{n} \sum_{i=1}^{n} \log \left(D_{w}\left(X_{i}\right)\right)+\frac{1}{n} \sum_{i=1}^{n} \log \left(1-D_{w}\left(G_{\theta}\left(Z_{i}\right)\right)\right) \\
\theta^{*} \in \arg \min _{\theta \in \Theta} D_{\mathrm{JS}}\left(P_{\text {real }} \| P_{\theta}\right)
\end{gathered}
$$

and for all $\theta \in \Theta$, there exists $w \in W$ such that $\left\|D_{w}-D^{*}\left(P_{\theta}\right)\right\|_{\infty} \leq \varepsilon$
 representation power of W
["Generalization and Equilibrium in Generative Adversarial Network",Arora et al.,2017]
["On the Discrimination-Generalization Tradeoff in GANs",Zhang et al., 2017]
["Some Theoretical Properties of GANs",Biau,Cadre,Sangnier,Tanielian 2018]

Generalization [Arora et al. 17]

- Neural network generative modes are not Lipschitz in general. In one extreme, if we allow the generator to be chosen from any distribution, then GAN does not generalize in JS-divergence [Lemma 1, Arora et al.17].

$$
D_{\mathrm{JS}}\left(P_{\text {real }}, P_{\hat{\theta}}\right)=\log 2
$$

In other words, memorization or overfitting happens.

- However, they generalize in the loss (which is the property of the NN discriminator, and not the generator) [Theorem 3.1, Arora et al. 17]:

$$
\left|\mathcal{L}\left(P_{\text {real }}, P\right)-\hat{\mathcal{L}}\left(P_{\text {real }}, P\right)\right|=\tilde{O}\left(\sqrt{\frac{p}{n}}\right)
$$

with high probability

Open questions in generalization

- Can we provide more fine grained generalization bounds that differentiate different choices of the loss functions?
- The analysis critically relies on Lipschitz condition. In practice, regularizers are commonly used in training the discriminator. Can generalization bounds help design new regularizers, and understand their roles?
- How do we solve the minimax optimization and learn $\hat{\theta}$?

Role of the discriminator for Gaussian [FSXT17]

- Some of the open equations are answered in LQG setting with Linear generator, Quadratic loss, and Gaussian distribution. If the discriminator is constrained to be quadratic function of the input, then [Theorem 3,FSXT17]

$$
\begin{aligned}
& \left\|\Sigma^{*}-\hat{\Sigma}\right\|=O\left(\sqrt{\frac{d}{n}}\right) \\
& \text { with high probability }
\end{aligned}
$$

- However, for unconstrained discriminator [Theorem 2,FSXT17]

$$
\left\|\Sigma^{*}-\hat{\Sigma}\right\|=O\left(n^{-\frac{2}{d}}\right)
$$

- Discriminator of matching complexity is critical
["Understanding GANs: the LQG Setting",Feizi,Suh,Xia,Tse, 2017]

Open questions in the role of the discriminator

- What about mixture of two Gaussians?
- For Gaussian, constraining to linear generators reduces the problem to standard parameter learning (in this case the covariance matrix). For mixture of Gaussians, the counterpart is two linear generators with gating. However, this is further departure from the typical GAN.
- At the discriminator, a counterpart will be tensor methods, which is only known to recover the mean of the mixtures and not the covariance matrices.

Interpretability / Disentangling Representation

- One weakness of GAN is that the latent variable Z has no interpretable meaning

- Ideally,

Z_{1} : digits

Z_{2} : rotation

Z_{3} : width
["InfoGAN: Interpretable Representation Learning by Information Maximizing GANs",Chen et al., 2016]

InfoGAN, Chen et al. 2016

- Proposes maximizing mutual information between the image $G\left(Z_{1}, Z_{2}\right)$ and a part of the latent representation Z_{1}

$$
\min _{G} \max _{D} V(D, G)-\lambda I\left(Z_{1} ; G\left(Z_{1}, Z_{2}\right)\right)
$$

- Challenge: minimizing (negative) mutual information Solution: Variational method to optimize over another neural network for $Q\left(Z_{1} \mid X\right)$
$\min _{G} \max _{D} V(D, G)-\lambda \mathbb{E}_{X \sim G\left(Z_{1}, Z_{2}\right)}\left[\mathbb{E}_{\tilde{Z}_{1} \sim P\left(Z_{1} \mid X\right)}\left[\log Q\left(\tilde{Z}_{1} \mid X\right)\right]\right]$

Summary

- Mode Collapse
- [PacGAN: the power of two samples in generative adversarial networks, Lin,Khetan,Fanti,Oh,2017]
- Theoretical understanding leads to the design of new principled architectures
- Generalization
- Beginning of theoretical understanding of the tradeoffs involved
- Potential to lead to new designs of loss and regularizers
- Interpretation
- Powerful tool via mutual information
- Theoretical understanding is missing

Collaborators

Ashish Khetan (Amazon AI)

Kiran Thekumparampil (UIUC)

Organization:This Tutorial

Part-1: Deep learning for information theory

1a. Deep learning for communication

1b. Deep learning for statistical inference

Part-2: Information theory for deep learning

2a. Theory for GAN

2b. Learning Gated
Neural Networks

Learning in Gated Neural Networks

Ashok Vardhan Makkuva (UIUC)
Sewoong Oh (UIUC)
Pramod Viswanath (UIUC)
Sreeram Kannan (UW, Seattle)

Gated Recurrent Neural Networks

- Well-known examples: LSTM and GRU
- State-of-the-art results in many challenging ML tasks

Figure: Google Duplex

Siri, Alexa and more...

- Language translation
- Speech recognition
- Phrase completion

NNs and RNNs

- Feed-forward neural networks

- Recurrent neural networks (Gating)

Feed-forward unit

Simple recurrent unit

Gated recurrent unit (GRU)

Mixture-of-Experts

- Jacobs, Jordan, Nowlan and Hinton, 1991 f = sigmoid, $g=$ linear, tanh, ReLU

$f=$ sigmoid, $g=$ linear, tanh, ReLU

MoE generalizes 2-layer Neural Network

(a) 2-node NN

(b) $2-\mathrm{MoE}$

MoE: Modern relevance

- Outrageously large neural networks

What is known about MoE?

Adaptive mixtures of local experts36631991
RA Jacobs, MI Jordan. SJ Nowlan, GE HintonNeural computation 3 (1). 79-87
Sharing clusters among related groups: Hierarchical Dirichlet processes 3273 2005
Advances in neural information processing systems, 1385-1392
Hierarchical mixtures of experts and the EM algorithm 30901994
MI Jordan, RA JacobsNeurat computation 6 (2), 181-214

- No provable learning algorithms for parameters ${ }^{1}{ }^{*}$
${ }^{1} 20$ years of $\mathrm{MoE}, \mathrm{MoE}$: a literature survey

Open problem for $25+$ years

Open question

Given n i.i.d. samples $\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$, does there exist an efficient learning algorithm with provable theoretical guarantees to learn the regressors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ and the gating parameter \boldsymbol{w} ?

Gradient descent

$$
\begin{gather*}
\min _{\theta} \mathbb{E} L\left(y, \psi_{\theta}(x)\right) \tag{1}\\
\theta^{t+1}=\theta^{t}-\gamma \nabla_{\theta} \mathbb{E} L\left(y, \psi_{\theta}(x)\right) \tag{2}
\end{gather*}
$$

- If loss is convex in parameters, problem is easy.
- However, loss is highly non-convex

Fundamental Reason for Non-convexity

- Let $w_{1}, w_{2}, a_{1}, a_{2}$ be the true parameters.
- Permutation invariance:

$$
\begin{equation*}
L\left(a_{1}, a_{2}, w_{1}, w_{2}\right)=L\left(a_{2}, a_{1}, w_{2}, w_{1}\right) \tag{3}
\end{equation*}
$$

- If loss is convex, choosing all hidden nodes same is optimal!!!

$$
\begin{equation*}
L\left(\frac{a_{1}+a_{2}}{2}, \frac{a_{1}+a_{2}}{2}, \frac{w_{1}+w_{2}}{2}, \frac{w_{1}+w_{2}}{2}\right)=L\left(a_{1}, a_{2}, w_{1}, w_{2}\right) \tag{4}
\end{equation*}
$$

- Loss cannot be convex in NN or MoE!

MoE vs. 2-layer Neural Network

(a) 2-node NN

(b) $2-\mathrm{MoE}$

- MoE has both classifier and regressor!

MoE: Modern relevance

- Outrageously large neural networks

MoE: Modular structure

Key observation
If we know the regressors, learning the gating parameter is easy and vice-versa. How to break the gridlock?

Focus of this talk: Breaking the gridlock

- First learning guarantees for MoE
- Two novel approaches to learn the parameters:

Method 1: Beyond gradient descent
Novel algorithm with first recoverable guarantees

Method 2: Change the loss function
Non-trivial loss function for which GD optimal

- Both approaches work with global initializations
- restriction: \boldsymbol{x} is Gaussian

Generalizability

$k-\mathrm{MoE}$

Generalizability

Hierarchical mixture of experts (HME)

Method 1: Design of algorithms

Algorithmic approach: Simplified model

Model for MoE:

$$
P_{y \mid \boldsymbol{x}}=f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right) \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{1}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)+\left(1-f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)\right) \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{2}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)
$$

Without gating:

$$
P_{y \mid x}=p \cdot \mathcal{N}\left(y \mid g\left(\boldsymbol{a}_{1}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)+(1-p) \cdot \mathcal{N}\left(y \mid g\left(\boldsymbol{a}_{2}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)
$$

- Mixture of generalized linear models (GLMs)!
- Similar to 2-layer NN
- How do we learn \boldsymbol{a}_{1} and \boldsymbol{a}_{2} without knowing p ?
- Method of moments [Sedghi, Janzamin and Anandkumar '16]

Method of moments in GLMs

- Basic idea [Sedghi et al '16]: Construct a third-order super-symmetric tensor from data such that

$$
\mathbb{E}(\psi(X, Y))=\sum_{i} \boldsymbol{a}_{i} \otimes \boldsymbol{a}_{i} \otimes \boldsymbol{a}_{i} \Rightarrow \boldsymbol{a}_{i} \text { can be recovered }
$$

- How do we construct ψ ?
- Stein's lemma

Stein's lemma 101

Stein's lemma

For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\boldsymbol{x} \sim \mathcal{N}\left(0, I_{d}\right)$,

$$
\mathbb{E}[f(\boldsymbol{x}) \cdot \boldsymbol{x}]=\mathbb{E}\left[\nabla_{\boldsymbol{x}} f(\boldsymbol{x})\right] \in \mathbb{R}^{d}
$$

Non-linear regression using Stein's lemma: If $y=g\left(\boldsymbol{a}_{1}^{\top} \boldsymbol{x}\right)+N$, then

$$
\underbrace{\mathbb{E}[\boldsymbol{y} \cdot \boldsymbol{x}]}_{\text {ated from samples }}=\mathbb{E}\left[g\left(\mathbf{a}_{1}^{\top} \boldsymbol{x}\right) \cdot \boldsymbol{x}\right]+\underbrace{\mathbb{E}[N \cdot \boldsymbol{x}]}_{=0}
$$

$$
\begin{aligned}
& =\mathbb{E}\left[\nabla_{x} g\left(\mathbf{a}_{1}^{\top} \boldsymbol{x}\right)\right] \\
& \propto \boldsymbol{a}_{1}
\end{aligned}
$$

Mixture of GLMs: Stein's lemma 101

- Recall, for mixture of GLMs:

$$
P_{y \mid \boldsymbol{x}}=p \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{1}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)+(1-p) \cdot \mathcal{N}\left(y \mid g\left(\boldsymbol{a}_{2}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)
$$

- From Stein's lemma,

$$
\mathbb{E}[y \cdot \boldsymbol{x}] \propto p \cdot \boldsymbol{a}_{1}+(1-p) \cdot \boldsymbol{a}_{2}
$$

- Not unique in \boldsymbol{a}_{1} and \boldsymbol{a}_{2}
- How can we ensure uniqueness?

Stein's lemma 102

2nd order Stein's lemma

$$
\mathbb{E}[f(\boldsymbol{x}) \cdot \underbrace{\left(\boldsymbol{x} \boldsymbol{x}^{\top}-I\right)}_{\mathcal{S}_{2}(\boldsymbol{x})}]=\mathbb{E}\left[\nabla_{\boldsymbol{x}}^{(2)} f(\boldsymbol{x})\right] \in \mathbb{R}^{d \times d} .
$$

- Mixture of GLMs:

$$
\begin{aligned}
P_{y \mid \boldsymbol{x}} & =p \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{1}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)+(1-p) \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{2}^{\top} \boldsymbol{x}\right), \sigma^{2}\right) \\
\Rightarrow \mathbb{E}\left[y \cdot\left(\boldsymbol{x} \boldsymbol{x}^{\top}-I\right)\right] & \propto 2 p \cdot \mathbf{a}_{1} \mathbf{a}_{1}^{\top}+2(1-p) \cdot \mathbf{a}_{2} \mathbf{a}_{2}^{\top} .
\end{aligned}
$$

- Not unique!
- How can we ensure uniqueness?

Stein's lemma 103

3rd order Stein's lemma

$$
\mathbb{E}\left[f(\boldsymbol{x}) \cdot \mathcal{S}_{3}(\boldsymbol{x})\right]=\mathbb{E}\left[\nabla_{\boldsymbol{x}}^{(3)} f(\boldsymbol{x})\right] \in \mathbb{R}^{d \times d \times d}
$$

- Score transformation $\mathcal{S}_{3}(\boldsymbol{x})=\boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}-\sum_{i \in[d]} \operatorname{sym}\left(\boldsymbol{x} \otimes \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i}\right)$
- Mixture of GLMs:

$$
\begin{aligned}
P_{y \mid \boldsymbol{x}} & =p \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{1}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)+(1-p) \cdot \mathcal{N}\left(y \mid g\left(\boldsymbol{a}_{2}^{\top} \boldsymbol{x}\right), \sigma^{2}\right) \\
\Rightarrow \mathbb{E}\left[y \cdot \mathcal{S}_{3}(\boldsymbol{x})\right] & \propto p \cdot \boldsymbol{a}_{1} \otimes \boldsymbol{a}_{1} \otimes \boldsymbol{a}_{1}+(1-p) \cdot \boldsymbol{a}_{2} \otimes \boldsymbol{a}_{2} \otimes \boldsymbol{a}_{2}
\end{aligned}
$$

- Unique! (by Kruskal's theorem)
- Note: LHS estimated from samples!

MoE: Stein's lemma

- For MoE, $p=p(x)=f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)$ since

$$
P_{y \mid \boldsymbol{x}}=f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right) \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{1}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)+\left(1-f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)\right) \cdot \mathcal{N}\left(y \mid g\left(\mathbf{a}_{2}^{\top} \boldsymbol{x}\right), \sigma^{2}\right)
$$

- Can we use Stein's lemma to learn \boldsymbol{a}_{1} and \boldsymbol{a}_{2} ?
- Natural attempt:

$$
\mathbb{E}\left[y \cdot S_{3}(x)\right]=\boldsymbol{a}_{1} \otimes \boldsymbol{a}_{1} \otimes \boldsymbol{a}_{1}+\boldsymbol{w} \otimes \boldsymbol{a}_{1} \otimes \boldsymbol{w}+\ldots+\boldsymbol{a}_{1} \otimes \boldsymbol{a}_{1} \otimes \boldsymbol{w}+\ldots
$$

Not a super-symmetric tensor

- Can we construct a super-symmetric tensor for MoE?

Key insight: Hermite polynomial transformation

Suppose g =linear and $\sigma=0$. Then

$$
\begin{aligned}
P_{y \mid \boldsymbol{x}} & =f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right) \cdot \mathbb{1}\left\{y=\boldsymbol{a}_{1}^{\top} \boldsymbol{x}\right\}+\left(1-f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)\right) \mathbb{1}\left\{y=\boldsymbol{a}_{1}^{\top} \boldsymbol{x}\right\} \\
\Rightarrow \mathbb{E}\left[y^{3}-3 y \mid \boldsymbol{x}\right] & =\sum_{i \in\{1,2\}} f\left(\boldsymbol{w}_{i}^{\top} \boldsymbol{x}\right)\left(\left(\mathbf{a}_{i}^{\top} \boldsymbol{x}\right)^{3}-3\left(\mathbf{a}_{i}^{\top} \boldsymbol{x}\right)\right), \quad \boldsymbol{w}_{2}=-\boldsymbol{w}_{1}
\end{aligned}
$$

Now applying Stein's lemma,

$$
\mathbb{E}\left[\left(y^{3}-3 y\right) \cdot \mathcal{S}_{3}(\boldsymbol{x})\right]=\mathbb{E}\left[\nabla_{\boldsymbol{x}}^{3} \mathbb{E}\left[y^{3}-3 y \mid \boldsymbol{x}\right]\right]=3 \sum_{i \in\{1,2\}^{\prime}} \boldsymbol{a}_{i} \otimes \boldsymbol{a}_{i} \otimes \boldsymbol{a}_{i}
$$

How do cross terms like $\boldsymbol{a}_{i} \otimes \boldsymbol{a}_{i} \otimes \boldsymbol{w}$ disappear?

- Reason: $\mathbb{E}\left[H_{3}^{\prime}(Z)\right]=\mathbb{E}\left[H_{3}^{\prime \prime}(Z)\right]=\mathbb{E}\left[H_{3}^{\prime \prime \prime}(Z)\right]=0$
- $H_{3}(z)=z^{3}-3 z$ is third-Hermite polynomial

Does this work for $\sigma \neq 0$?

Linear experts: Hermite-like-polynomials

Suppose $g=$ linear and $\sigma \neq 0$:

$$
P_{y \mid \boldsymbol{x}}=f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right) \cdot \mathcal{N}\left(y \mid \mathbf{a}_{1}^{\top} \boldsymbol{x}, \sigma^{2}\right)+\left(1-f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)\right) \cdot \mathcal{N}\left(y \mid \boldsymbol{a}_{2}^{\top} \boldsymbol{x}, \sigma^{2}\right)
$$

Super-symmetric tensor

$$
\mathcal{T}_{3}=\mathbb{E}\left[\left(y^{3}-3 y\left(1+\sigma^{2}\right)\right) \cdot \mathcal{S}_{3}(\boldsymbol{x})\right]=3\left(\boldsymbol{a}_{1} \otimes \mathbf{a}_{1} \otimes \mathbf{a}_{1}+\boldsymbol{a}_{2} \otimes \boldsymbol{a}_{2} \otimes \boldsymbol{a}_{2}\right)
$$

- This very much needs special linear structure. What about other non-linearities for g ?

Generalization: Cubic polynomial transformations

- For a wide class of non-linearities such as $g=$ linear, sigmoid, ReLU, etc.

$$
\mathcal{T}_{3}=\mathbb{E}\left[\left(y^{3}+\alpha y^{2}+\beta y\right) \cdot \mathcal{S}_{3}(\boldsymbol{x})\right]=c\left(\boldsymbol{a}_{1} \otimes \boldsymbol{a}_{1} \otimes \boldsymbol{a}_{1}+\boldsymbol{a}_{2} \otimes \boldsymbol{a}_{2} \otimes \boldsymbol{a}_{2}\right)
$$

- How do we choose α and β ?
- Solving a linear system
- Example: For sigmoid,

$$
\left[\begin{array}{cc}
0.2067 & 0.2066 \\
0.0624 & -0.0001
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
-0.1755-0.6199 \sigma^{2} \\
-0.0936
\end{array}\right]
$$

- Key idea: Acts like a 'Hermite' like polynomial for general g and cancels cross terms

Learning regressors: Spectral decomposition

Algorithm

- Input: Samples $\left(\boldsymbol{x}_{i}, y_{i}\right)$
- Compute $\hat{\mathcal{T}}_{3}=(1 / n) \sum_{i} H_{3}\left(y_{i}\right) \cdot \mathcal{S}_{3}\left(\boldsymbol{x}_{i}\right)$
- $\hat{\boldsymbol{a}}_{1}, \hat{\boldsymbol{a}}_{2}=$ Rank-2 decomposition on \mathcal{T}_{3}

Learning the gating

- Recall

$$
P_{y \mid \boldsymbol{x}}=f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right) \cdot \mathcal{N}\left(y \mid \mathbf{a}_{1}^{\top} \boldsymbol{x}, \sigma^{2}\right)+\left(1-f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)\right) \cdot \mathcal{N}\left(y \mid \mathbf{a}_{2}^{\top} \boldsymbol{x}, \sigma^{2}\right)
$$

- If we know \boldsymbol{a}_{1} and \boldsymbol{a}_{2}, learning \boldsymbol{w} is a classification problem!
- Traditional methods:
- EM algorithm
- Gradient descent on log-likelihood

Theoretical contributions

- Show global convergence for existing methods
- Provide convergence rate
- Finite sample complexity
- First theoretical guarantees

Learning the gating parameters

\hat{Y}
Suppose spectral methods give $\hat{\mathbf{a}}_{i}$ with $\left\|\hat{\mathbf{a}}_{i}-\boldsymbol{a}_{i}\right\|_{2} \leq \sigma^{2} \varepsilon$
For high SNR, i.e. $\sigma<\sigma_{0}, \sigma_{0}$ is a dimension independent constant:

- EM iterates converge geometrically to $\hat{\boldsymbol{w}}$
- Convergence rate is a dimension-independent constant depending on σ and $\left\|\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right\|$
- $\hat{\boldsymbol{w}}$ is ε-close to the ground truth

Method 2: Optimization framework-loss function design

Loss function design: Paradigm

Figure: Standard Loss function architecture

- Standard approaches Get stuck in local minima, no theoretical analysis, and use single loss function
- Modify the architecture to design a loss function g
- Building on [R.Ge, J.D. Lee, T. Ma '18]

Figure: Modified Loss function architecture

Main contributions

- Separate loss functions L_{4} and $L_{\log }$ to learn $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ and \boldsymbol{w}

Samples

Log-likelihood loss

- Gradient descent on both L_{4} and $L_{\text {log }}$. What are they?

Tensor based loss function for regressors

- For linear experts,

$$
P_{y \mid \boldsymbol{x}}=f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right) \cdot \mathcal{N}\left(y \mid \boldsymbol{a}_{1}^{\top} \boldsymbol{x}, \sigma^{2}\right)+\left(1-f\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)\right) \cdot \mathcal{N}\left(y \mid \boldsymbol{a}_{2}^{\top} \boldsymbol{x}, \sigma^{2}\right)
$$

- Stein's lemma+ 4-Hermite polynomial implies

$$
\mathcal{T}_{4}=\mathbb{E}\left[\left(y^{4}-6 y^{2}\left(1+\sigma^{2}\right)\right) \cdot \mathcal{S}_{4}(\boldsymbol{x})\right]=12\left(\boldsymbol{a}_{1}^{\otimes 4}+\boldsymbol{a}_{2}^{\otimes 4}\right)
$$

- If $\hat{\mathbf{a}}_{1}$ and $\hat{\mathbf{a}}_{2}$ are parameters,

$$
\begin{gathered}
L_{4}\left(\hat{\mathbf{a}}_{1}, \hat{\mathbf{a}}_{2}\right) \triangleq \sum_{j \neq k} \mathcal{T}_{4}\left(\hat{\mathbf{a}}_{j}, \hat{\mathbf{a}}_{j}, \hat{\mathbf{a}}_{k}, \hat{\mathbf{a}}_{k}\right)-\mu \sum_{j \in\{1,2\}} \mathcal{T}_{4}\left(\hat{\mathbf{a}}_{j}, \hat{\mathbf{a}}_{j}, \hat{\mathbf{a}}_{j}, \hat{\mathbf{a}}_{j}\right) \\
+\lambda \sum_{j \in\{1,2\}}\left(\left\|\hat{\mathbf{a}}_{j}\right\|^{2}-1\right)^{2}
\end{gathered}
$$

Landscape of L_{4}

Properties

- No spurious local minima: All local minima are global
- Global minima are ground truth (upto permutation and sign-flip)
- All saddle points have negative curvature
- SGD converges to approximate global minima

Why L_{4} ?

Summary

- Algorithmic innovation: First provably consistent algorithms for MoE in 25+ years
- Loss function innovation: First SGD based algorithm on novel loss functions with provably nice landscape properties
- Sample complexity: First sample complexity results for MoE
- Global convergence: Our algorithms work with global initializations

Open questions

- Generalizing to non-Gaussian inputs
- Results: In the absence of gating, we have a loss function framework to provably learn the regressors
- With gating?
- Learning algorithms for time-series?
- Learning algorithms and sample complexity for deep neural networks.

Thanks for support

Thank you!

